論文の概要: Defending Regression Learners Against Poisoning Attacks
- arxiv url: http://arxiv.org/abs/2008.09279v1
- Date: Fri, 21 Aug 2020 03:02:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 21:01:41.932553
- Title: Defending Regression Learners Against Poisoning Attacks
- Title(参考訳): 中毒攻撃から回帰学習者を守る
- Authors: Sandamal Weerasinghe, Sarah M. Erfani, Tansu Alpcan, Christopher
Leckie, Justin Kopacz
- Abstract要約: N-LIDと呼ばれる新しい局所固有次元(LID)に基づく測度を導入し,その近傍データ点のLIDの局所偏差を測定する。
N-LIDは、正常なサンプルから有毒なサンプルを識別し、攻撃者を仮定しないN-LIDベースの防御アプローチを提案する。
提案した防御機構は,予測精度(未固定リッジモデルと比較して最大76%低いMSE)とランニング時間において,より優れることを示す。
- 参考スコア(独自算出の注目度): 25.06658793731661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regression models, which are widely used from engineering applications to
financial forecasting, are vulnerable to targeted malicious attacks such as
training data poisoning, through which adversaries can manipulate their
predictions. Previous works that attempt to address this problem rely on
assumptions about the nature of the attack/attacker or overestimate the
knowledge of the learner, making them impractical. We introduce a novel Local
Intrinsic Dimensionality (LID) based measure called N-LID that measures the
local deviation of a given data point's LID with respect to its neighbors. We
then show that N-LID can distinguish poisoned samples from normal samples and
propose an N-LID based defense approach that makes no assumptions of the
attacker. Through extensive numerical experiments with benchmark datasets, we
show that the proposed defense mechanism outperforms the state of the art
defenses in terms of prediction accuracy (up to 76% lower MSE compared to an
undefended ridge model) and running time.
- Abstract(参考訳): 回帰モデルは工学的応用から金融予測まで広く使われており、攻撃者が予測を操作できるデータ中毒の訓練のような標的となる悪意のある攻撃に対して脆弱である。
この問題に対処しようとする以前の研究は、攻撃/攻撃者の性質に関する仮定や学習者の知識を過大評価することに依存しており、現実的ではない。
N-LIDと呼ばれる新しい局所固有次元(LID)に基づく測度を導入し,その近傍データ点のLIDの局所偏差を測定する。
そこで我々は,N-LIDが通常の試料と区別できることを示し,N-LIDをベースとした防御手法を提案する。
ベンチマークデータセットを用いた広範な数値実験により,提案した防御機構は,予測精度(未固定リッジモデルと比較して最大76%低いMSE)とランニング時間において,アートディフェンスの状態を向上することを示した。
関連論文リスト
- Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
軽快でプラガブルで効果的な PLM 防御である MDP を,少人数の学習者として提唱する。
我々は,MDPが攻撃の有効性と回避性の両方を選択できる興味深いジレンマを発生させることを解析的に示す。
論文 参考訳(メタデータ) (2023-09-23T04:41:55Z) - Adversarial Attacks Against Uncertainty Quantification [10.655660123083607]
この研究は、攻撃者が依然として不確実性推定を操作することに興味を持つ異なる敵シナリオに焦点を当てる。
特に、アウトプットが下流モジュールや人間のオペレータによって消費される場合、機械学習モデルの使用を損なうことが目標である。
論文 参考訳(メタデータ) (2023-09-19T12:54:09Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
本稿では,軌道予測モデルに対する新たな逆バックドア攻撃を提案する。
我々の攻撃は、自然主義的、従って、新しい2段階のアプローチで作られた毒のサンプルを盗むことによって、訓練時に被害者に影響を及ぼす。
提案手法は,予測モデルの性能を著しく損なうおそれがあり,攻撃効果が高いことを示す。
論文 参考訳(メタデータ) (2023-06-27T19:15:06Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Adversarial Attack Based on Prediction-Correction [8.467466998915018]
ディープニューラルネットワーク(DNN)は、元の例に小さな摂動を加えることで得られる敵の例に対して脆弱である。
本稿では,新たな予測補正(PC)に基づく対角攻撃を提案する。
提案したPCベースの攻撃では、予測された例を最初に生成するために既存の攻撃を選択し、予測された例と現在の例を組み合わせて追加の摂動を決定する。
論文 参考訳(メタデータ) (2023-06-02T03:11:32Z) - Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning
Attacks [31.339252233416477]
対象パラメータに対するデータ中毒攻撃の本質的な限界を探索するための技術ツールとして,モデル中毒の到達可能性の概念を紹介した。
我々は、一般的なMLモデルの中で驚くべき位相遷移現象を確立し、定量化するために、容易に計算可能なしきい値を得る。
我々の研究は, 有毒比がもたらす重要な役割を強調し, データ中毒における既存の経験的結果, 攻撃, 緩和戦略に関する新たな知見を隠蔽する。
論文 参考訳(メタデータ) (2023-03-07T01:55:26Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
データ中毒は、悪意のあるトレーニングデータを通じて、敵対者が機械学習アルゴリズムの振る舞いを操作する場合を考慮している。
本研究では,攻撃開始時間と攻撃持続時間を測定する2つの新しい指標である耳線と持続時間を用いたデータ中毒の時間的脅威モデルを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:59:19Z) - Defending against the Label-flipping Attack in Federated Learning [5.769445676575767]
フェデレーテッド・ラーニング(FL)は、参加する仲間にデザインによる自律性とプライバシを提供する。
ラベルフリッピング(LF)攻撃(英: label-flipping, LF)は、攻撃者がラベルをめくってトレーニングデータに毒を盛る攻撃である。
本稿では、まず、ピアのローカル更新からこれらの勾配を動的に抽出する新しいディフェンスを提案する。
論文 参考訳(メタデータ) (2022-07-05T12:02:54Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
我々は,テキストバックドア学習の実装と評価を促進するオープンソースツールキットOpenBackdoorを開発した。
また,単純なクラスタリングに基づく防御ベースラインであるCUBEを提案する。
論文 参考訳(メタデータ) (2022-06-17T02:29:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。