論文の概要: Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning
Attacks
- arxiv url: http://arxiv.org/abs/2303.03592v3
- Date: Tue, 6 Jun 2023 04:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 20:36:41.006443
- Title: Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning
Attacks
- Title(参考訳): モデル標的非差別的データ中毒攻撃の限界を探る
- Authors: Yiwei Lu, Gautam Kamath, Yaoliang Yu
- Abstract要約: 対象パラメータに対するデータ中毒攻撃の本質的な限界を探索するための技術ツールとして,モデル中毒の到達可能性の概念を紹介した。
我々は、一般的なMLモデルの中で驚くべき位相遷移現象を確立し、定量化するために、容易に計算可能なしきい値を得る。
我々の研究は, 有毒比がもたらす重要な役割を強調し, データ中毒における既存の経験的結果, 攻撃, 緩和戦略に関する新たな知見を隠蔽する。
- 参考スコア(独自算出の注目度): 31.339252233416477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Indiscriminate data poisoning attacks aim to decrease a model's test accuracy
by injecting a small amount of corrupted training data. Despite significant
interest, existing attacks remain relatively ineffective against modern machine
learning (ML) architectures. In this work, we introduce the notion of model
poisoning reachability as a technical tool to explore the intrinsic limits of
data poisoning attacks towards target parameters (i.e., model-targeted
attacks). We derive an easily computable threshold to establish and quantify a
surprising phase transition phenomenon among popular ML models: data poisoning
attacks can achieve certain target parameters only when the poisoning ratio
exceeds our threshold. Building on existing parameter corruption attacks and
refining the Gradient Canceling attack, we perform extensive experiments to
confirm our theoretical findings, test the predictability of our transition
threshold, and significantly improve existing indiscriminate data poisoning
baselines over a range of datasets and models. Our work highlights the critical
role played by the poisoning ratio, and sheds new insights on existing
empirical results, attacks and mitigation strategies in data poisoning.
- Abstract(参考訳): 無差別なデータ中毒攻撃は、少量の破損したトレーニングデータを注入することで、モデルのテスト精度を低下させることを目的としている。
大きな関心にもかかわらず、既存の攻撃は現代の機械学習(ML)アーキテクチャに対して比較的効果が低い。
本稿では,ターゲットパラメータ(すなわちモデル標的攻撃)に対するデータ中毒攻撃の本質的限界を検討するための技術ツールとして,モデル中毒到達可能性の概念を紹介する。
我々は、一般的なMLモデルの中で驚くべき位相遷移現象を確立し、定量化するために、容易に計算可能な閾値を導出する。
既存のパラメータ破壊攻撃と勾配キャンセル攻撃の精錬に基づいて,我々の理論的知見の検証,遷移しきい値の予測可能性の検証,および既存の無差別なデータ中毒ベースラインをさまざまなデータセットやモデルに対して大幅に改善するための広範な実験を行った。
我々の研究は, 有毒比がもたらす重要な役割を強調し, データ中毒における既存の経験的結果, 攻撃, 緩和戦略に関する新たな知見を隠蔽する。
関連論文リスト
- Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
ディープニューラルネットワークは、データ中毒攻撃に弱いことが証明されている。
混合データセットから有毒なサンプルを検出することは極めて有益であり、困難である。
UE識別のための反復フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:26:13Z) - Have You Poisoned My Data? Defending Neural Networks against Data Poisoning [0.393259574660092]
本稿では,トランスファー学習環境における有毒なデータポイントの検出とフィルタリングを行う新しい手法を提案する。
有効毒は, 特徴ベクトル空間の清浄点とよく区別できることを示す。
提案手法は, 防衛率と最終訓練モデルの性能において, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-20T11:50:16Z) - What Distributions are Robust to Indiscriminate Poisoning Attacks for
Linear Learners? [15.848311379119295]
本研究では, 学習者に対する無差別な毒殺について検討し, 学習者に対して, 学習データにいくつかの工芸品を注入し, 誘導モデルに高い試験誤差を生じさせるよう強制することを目的とした。
そこで本研究では, 線形学習者に対して, 線形学習者に対する有害な攻撃を非差別化するために, データセットが本質的に堅牢であるかどうかを考察した。
論文 参考訳(メタデータ) (2023-07-03T14:54:13Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
データ中毒は、悪意のあるトレーニングデータを通じて、敵対者が機械学習アルゴリズムの振る舞いを操作する場合を考慮している。
本研究では,攻撃開始時間と攻撃持続時間を測定する2つの新しい指標である耳線と持続時間を用いたデータ中毒の時間的脅威モデルを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:59:19Z) - Analysis and Detectability of Offline Data Poisoning Attacks on Linear
Dynamical Systems [0.30458514384586405]
統計検査のレンズを用いて最小二乗推定値に有毒が及ぼす影響について検討した。
古典的な統計的テストから逃れることのできる最小二乗推定器に対するステルスデータ中毒攻撃を提案する。
論文 参考訳(メタデータ) (2022-11-16T10:01:03Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
我々は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを示します。
我々の研究は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを検証する。
論文 参考訳(メタデータ) (2021-06-18T08:29:53Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Model-Targeted Poisoning Attacks with Provable Convergence [19.196295769662186]
中毒攻撃では、トレーニングデータのごく一部を制御している敵が、破損したモデルを誘導する方法で、そのデータを選択しようとする。
我々は,凸機械学習モデルに対する中毒攻撃について検討し,特定のモデルを誘導する効率的な中毒攻撃を提案する。
論文 参考訳(メタデータ) (2020-06-30T01:56:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。