論文の概要: Occupancy Anticipation for Efficient Exploration and Navigation
- arxiv url: http://arxiv.org/abs/2008.09285v2
- Date: Tue, 25 Aug 2020 16:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 21:36:09.115629
- Title: Occupancy Anticipation for Efficient Exploration and Navigation
- Title(参考訳): 効率的な探索・航行のための活動予測
- Authors: Santhosh K. Ramakrishnan, Ziad Al-Halah, Kristen Grauman
- Abstract要約: そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
- 参考スコア(独自算出の注目度): 97.17517060585875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art navigation methods leverage a spatial memory to generalize
to new environments, but their occupancy maps are limited to capturing the
geometric structures directly observed by the agent. We propose occupancy
anticipation, where the agent uses its egocentric RGB-D observations to infer
the occupancy state beyond the visible regions. In doing so, the agent builds
its spatial awareness more rapidly, which facilitates efficient exploration and
navigation in 3D environments. By exploiting context in both the egocentric
views and top-down maps our model successfully anticipates a broader map of the
environment, with performance significantly better than strong baselines.
Furthermore, when deployed for the sequential decision-making tasks of
exploration and navigation, our model outperforms state-of-the-art methods on
the Gibson and Matterport3D datasets. Our approach is the winning entry in the
2020 Habitat PointNav Challenge. Project page:
http://vision.cs.utexas.edu/projects/occupancy_anticipation/
- Abstract(参考訳): 最先端ナビゲーション手法は空間記憶を利用して新しい環境に一般化するが、その占有マップはエージェントが直接観察する幾何学的構造を捉えることに限られる。
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エージェントは空間認識をより迅速に構築し、3D環境における効率的な探索とナビゲーションを容易にする。
エゴセントリックビューとトップダウンマップの両方のコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測でき、強力なベースラインよりもパフォーマンスが大幅に向上します。
さらに,探索およびナビゲーションのシーケンシャルな意思決定タスクにデプロイする場合,gibsonおよびmatterport3dデータセットの最先端のメソッドよりも優れています。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
プロジェクトページ: http://vision.cs.utexas.edu/projects/occupancy_anticipation/
関連論文リスト
- CityNav: Language-Goal Aerial Navigation Dataset with Geographic Information [25.51740922661166]
ビジョン・アンド・ランゲージナビゲーション(VLN)は、視覚的および言語的手がかりを統合することで、現実の環境を通して自律的なエージェントを誘導することを目的としている。
実都市の3次元環境における言語誘導型航法用に明示的に設計された新しいデータセットであるCityNavを紹介する。
CityNavは、新たに開発されたWebベースの3Dシミュレータを通じて収集された、人間の実証軌道と組み合わせた32kの自然言語記述で構成されている。
論文 参考訳(メタデータ) (2024-06-20T12:08:27Z) - Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation [10.898724668444125]
本稿では,車載エゴセントリック画像のみをリアルタイムに利用して,長距離の地形標高マップを予測できる学習型アプローチを提案する。
複雑で非構造的な地形における自律型オフロードロボットナビゲーションへの提案手法の適用性を実験的に検証した。
論文 参考訳(メタデータ) (2024-01-30T22:37:24Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
エージェントの自我中心のビューとセマンティックマップを対比してナビゲーション固有の視覚表現学習法を提案する。
Ego$2$-Map学習は、オブジェクト、構造、遷移などのコンパクトでリッチな情報を、ナビゲーションのためのエージェントのエゴセントリックな表現に転送する。
論文 参考訳(メタデータ) (2023-07-23T14:01:05Z) - Uncertainty-driven Planner for Exploration and Navigation [36.933903274373336]
未確認環境における探索とポイントゴールナビゲーションの問題点を考察する。
本論では,屋内マップよりも先進的な学習が,これらの問題に対処する上で大きなメリットをもたらすと論じている。
本稿では、まず、エージェントの視野を超えた占有マップを生成することを学習する新しい計画フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-24T05:25:31Z) - Structured Scene Memory for Vision-Language Navigation [155.63025602722712]
視覚言語ナビゲーション(VLN)のための重要なアーキテクチャを提案する。
ナビゲーション中に知覚を正確に記憶できるほど区画化されている。
また、環境内の視覚的および幾何学的な手がかりを捉え、取り除く、構造化されたシーン表現としても機能する。
論文 参考訳(メタデータ) (2021-03-05T03:41:00Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
視覚言語ナビゲーション(VLN)は、エージェントがフォトリアリスティックな環境の中でナビゲーションの指示を行うためのタスクである。
VLNの重要な課題の1つは、曖昧な指示による不確実性を緩和し、環境の観察を不十分にすることで、堅牢なナビゲーションを行う方法である。
この研究は、人間のナビゲーション行動からインスピレーションを得て、よりインテリジェントなVLNポリシーのためのアクティブな情報収集能力を持つエージェントを提供する。
論文 参考訳(メタデータ) (2020-07-15T23:54:20Z) - Improving Target-driven Visual Navigation with Attention on 3D Spatial
Relationships [52.72020203771489]
3次元屋内シーンにおける深部強化学習(DRL)を用いた目標駆動型視覚ナビゲーションについて検討した。
提案手法は視覚特徴と3次元空間表現を組み合わせてナビゲーションポリシーを学習する。
AI2-THORで実施した我々の実験は、SRとSPLの指標において、モデルがベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2020-04-29T08:46:38Z) - Learning to Move with Affordance Maps [57.198806691838364]
物理的な空間を自律的に探索し、ナビゲートする能力は、事実上あらゆる移動型自律エージェントの基本的な要件である。
従来のSLAMベースの探索とナビゲーションのアプローチは、主にシーン幾何学の活用に重点を置いている。
学習可能な余剰マップは探索と航法の両方において従来のアプローチの強化に利用でき、性能が大幅に向上することを示します。
論文 参考訳(メタデータ) (2020-01-08T04:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。