論文の概要: Uncertainty-driven Planner for Exploration and Navigation
- arxiv url: http://arxiv.org/abs/2202.11907v1
- Date: Thu, 24 Feb 2022 05:25:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-02-25 18:13:23.175762
- Title: Uncertainty-driven Planner for Exploration and Navigation
- Title(参考訳): 不確実性駆動による探査と航行のためのプランナー
- Authors: Georgios Georgakis, Bernadette Bucher, Anton Arapin, Karl
Schmeckpeper, Nikolai Matni, Kostas Daniilidis
- Abstract要約: 未確認環境における探索とポイントゴールナビゲーションの問題点を考察する。
本論では,屋内マップよりも先進的な学習が,これらの問題に対処する上で大きなメリットをもたらすと論じている。
本稿では、まず、エージェントの視野を超えた占有マップを生成することを学習する新しい計画フレームワークを提案する。
- 参考スコア(独自算出の注目度): 36.933903274373336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problems of exploration and point-goal navigation in
previously unseen environments, where the spatial complexity of indoor scenes
and partial observability constitute these tasks challenging. We argue that
learning occupancy priors over indoor maps provides significant advantages
towards addressing these problems. To this end, we present a novel planning
framework that first learns to generate occupancy maps beyond the field-of-view
of the agent, and second leverages the model uncertainty over the generated
areas to formulate path selection policies for each task of interest. For
point-goal navigation the policy chooses paths with an upper confidence bound
policy for efficient and traversable paths, while for exploration the policy
maximizes model uncertainty over candidate paths. We perform experiments in the
visually realistic environments of Matterport3D using the Habitat simulator and
demonstrate: 1) Improved results on exploration and map quality metrics over
competitive methods, and 2) The effectiveness of our planning module when
paired with the state-of-the-art DD-PPO method for the point-goal navigation
task.
- Abstract(参考訳): 屋内シーンの空間的複雑さと部分観測可能性の複雑さがこれらの課題を困難にしている環境での探索とポイントゴールナビゲーションの問題点を考察する。
我々は、屋内地図上での占有率優先の学習は、これらの問題に対処する上で大きな利点をもたらすと論じている。
この目的のために,まずエージェントの視野を超えて占有マップを生成することを学び,次に生成された領域のモデル不確実性を活用して各タスクの経路選択方針を定式化する,新たな計画枠組みを提案する。
ポイントゴールナビゲーションでは、ポリシーは、効率的かつトラバース可能なパスに対する高い信頼境界ポリシーを持つパスを選択し、一方で、このポリシーは候補パスに対するモデルの不確実性を最大化する。
Habitatシミュレータを用いたMatterport3Dの視覚的現実的な環境で実験を行い、以下の結果を得た。
1)競争方法に対する探索・地図品質指標の精度向上、及び
2) ポイントゴールナビゲーションタスクに対する最先端DD-PPO法と組み合わせた場合の計画モジュールの有効性について検討した。
関連論文リスト
- Path Planning based on 2D Object Bounding-box [8.082514573754954]
都会の運転シナリオにおける模倣学習を通じて開発された物体の2次元境界ボックスを利用する経路計画法を提案する。
これは、高精細(HD)マップデータと周囲のカメラが捉えた画像を統合することで実現される。
我々は, nuPlan計画課題におけるモデルの評価を行い, 既存のビジョン中心の手法と比較して, 競争力があることを示した。
論文 参考訳(メタデータ) (2024-02-22T19:34:56Z) - FIT-SLAM -- Fisher Information and Traversability estimation-based
Active SLAM for exploration in 3D environments [1.4474137122906163]
アクティブビジュアルSLAMは、地上ロボットのためのデニッドサブテレイン環境と屋外環境における幅広い応用を見出す。
探索ミッション中に目標選択と目標に向けた経路計画に知覚的考察を取り入れることが不可欠である。
本研究では,無人地上車両(UGV)を対象とした新しい探査手法であるFIT-SLAMを提案する。
論文 参考訳(メタデータ) (2024-01-17T16:46:38Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Long-HOT: A Modular Hierarchical Approach for Long-Horizon Object
Transport [83.06265788137443]
我々は、時間的拡張ナビゲーションのための新しいオブジェクトトランスポートタスクと新しいモジュラーフレームワークを提案することで、長距離探査と航法を具現化する上で重要な課題に対処する。
私たちの最初の貢献は、深層探査と長期計画に焦点を当てた新しいLong-HOT環境の設計である。
重み付けされたフロンティアの助けを借りて探索を行うために,シーンのトポロジカルグラフを構築するモジュラー階層輸送ポリシー(HTP)を提案する。
論文 参考訳(メタデータ) (2022-10-28T05:30:49Z) - Landmark Policy Optimization for Object Navigation Task [77.34726150561087]
本研究は,未確認環境において,与えられたセマンティックカテゴリに関連する最も近いオブジェクトにナビゲートするオブジェクトゴールナビゲーションタスクについて研究する。
最近の研究は、エンドツーエンドの強化学習アプローチとモジュールシステムの両方において大きな成果を上げていますが、堅牢で最適なものにするには大きな前進が必要です。
本稿では,これらのランドマークを抽出する手法として,標準的なタスクの定式化とランドマークとしての付加的な地域知識を取り入れた階層的手法を提案する。
論文 参考訳(メタデータ) (2021-09-17T12:28:46Z) - Deep Reinforcement Learning for Adaptive Exploration of Unknown
Environments [6.90777229452271]
私達はUAVのための1つのステップで調査および搾取間のトレードオフに適応的な調査のアプローチを開発します。
提案手法では, 環境マップを小型でトラクタブルな地図に分解するために, マップセグメンテーション手法を用いる。
その結果,本提案手法は,ランダムに生成された環境をナビゲートし,ベースラインと比較してAoIを短時間でカバーできることが示された。
論文 参考訳(メタデータ) (2021-05-04T16:29:44Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
本研究は,未確認環境における対象カテゴリーのインスタンスにナビゲートするオブジェクトゴールナビゲーションの問題を研究する。
本稿では,表層的なセマンティックマップを構築し,効率的に環境を探索する「ゴール指向セマンティック探索」というモジュールシステムを提案する。
論文 参考訳(メタデータ) (2020-07-01T17:52:32Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
本研究では,Q-Learningとニューラル表現を組み合わせた深層強化学習を用いて不安定性を回避する。
当社の方法論では,Q-Learningを深く使用して,アジャイル方法論のローリングウェーブプランニングアプローチと組み合わせています。
実験の結果,VVNの長距離ミッションの平均性能は55.31倍に向上した。
論文 参考訳(メタデータ) (2020-03-23T12:58:58Z) - Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling [65.99956848461915]
VLN(Vision-and-Language Navigation)は、エージェントが目標を達成するために3D環境を移動する方法を決定するタスクである。
VLNタスクの問題点の1つは、対話型環境において、人間に注釈を付けた指示で十分なナビゲーションパスを収集することは困難であるため、データの不足である。
本稿では,低品質な拡張データではなく,効果的な条件を考慮可能な,対向駆動の反実的推論モデルを提案する。
論文 参考訳(メタデータ) (2019-11-17T18:02:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。