Line-Circle-Square (LCS): A Multilayered Geometric Filter for Edge-Based
Detection
- URL: http://arxiv.org/abs/2008.09315v3
- Date: Wed, 13 Jan 2021 04:30:04 GMT
- Title: Line-Circle-Square (LCS): A Multilayered Geometric Filter for Edge-Based
Detection
- Authors: Seyed Amir Tafrishi and Xiaotian Dai and Vahid Esmaeilzadeh Kandjani
- Abstract summary: The proposed filter applies detection, tracking and learning to each defined expert to extract higher level information for judging scenes without over-calculation.
The experiment validates the effectiveness of the proposed filter in terms of detection precision and resource usage in both experimental and real-world scenarios.
- Score: 2.4054377316708964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a state-of-the-art filter that reduces the complexity in
object detection, tracking and mapping applications. Existing edge detection
and tracking methods are proposed to create suitable autonomy for mobile
robots, however, many of them face overconfidence and large computations at the
entrance to scenarios with an immense number of landmarks. The method in this
work, the Line-Circle-Square (LCS) filter, claims that mobile robots without a
large database for object recognition and highly advanced prediction methods
can deal with incoming objects that the camera captures in real-time. The
proposed filter applies detection, tracking and learning to each defined expert
to extract higher level information for judging scenes without
over-calculation. The interactive learning feed between each expert increases
the consistency of detected landmarks that works against overwhelming detected
features in crowded scenes. Our experts are dependent on trust factors'
covariance under the geometric definitions to ignore, emerge and compare
detected landmarks. The experiment validates the effectiveness of the proposed
filter in terms of detection precision and resource usage in both experimental
and real-world scenarios.
Related papers
- UAV-Based Human Body Detector Selection and Fusion for Geolocated Saliency Map Generation [0.2499907423888049]
The problem of reliably detecting and geolocating objects of different classes in soft real-time is essential in many application areas, such as Search and Rescue performed using Unmanned Aerial Vehicles (UAVs)
This research addresses the complementary problems of system contextual vision-based detector selection, allocation, and execution.
The detection results are fused using a method for building maps of salient locations which takes advantage of a novel sensor model for vision-based detections for both positive and negative observations.
arXiv Detail & Related papers (2024-08-29T13:00:37Z) - ED$^4$: Explicit Data-level Debiasing for Deepfake Detection [24.695989108814018]
Learning intrinsic bias from limited data has been considered the main reason for the failure of deepfake detection with generalizability.
We present ED$4$, a simple and effective strategy to address aforementioned biases explicitly at the data level.
We conduct extensive experiments to demonstrate its effectiveness and superiority over existing deepfake detection approaches.
arXiv Detail & Related papers (2024-08-13T10:05:20Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
We propose a simple yet effective deepfake detector called LSDA.
It is based on a idea: representations with a wider variety of forgeries should be able to learn a more generalizable decision boundary.
We show that our proposed method is surprisingly effective and transcends state-of-the-art detectors across several widely used benchmarks.
arXiv Detail & Related papers (2023-11-19T09:41:10Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
Face forgery recognition methods can only process one face at a time.
Most face forgery recognition methods can only process one face at a time.
We propose COMICS, an end-to-end framework for multi-face forgery detection.
arXiv Detail & Related papers (2023-08-03T03:37:13Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - Multimodal Graph Learning for Deepfake Detection [10.077496841634135]
Existing deepfake detectors face several challenges in achieving robustness and generalization.
We propose a novel framework, namely Multimodal Graph Learning (MGL), that leverages information from multiple modalities.
Our proposed method aims to effectively identify and utilize distinguishing features for deepfake detection.
arXiv Detail & Related papers (2022-09-12T17:17:49Z) - End-to-End Instance Edge Detection [29.650295133113183]
Edge detection has long been an important problem in the field of computer vision.
Previous works have explored category-agnostic or category-aware edge detection.
In this paper, we explore edge detection in the context of object instances.
arXiv Detail & Related papers (2022-04-06T15:32:21Z) - Towards Real-World Prohibited Item Detection: A Large-Scale X-ray
Benchmark [53.9819155669618]
This paper presents a large-scale dataset, named as PIDray, which covers various cases in real-world scenarios for prohibited item detection.
With an intensive amount of effort, our dataset contains $12$ categories of prohibited items in $47,677$ X-ray images with high-quality annotated segmentation masks and bounding boxes.
The proposed method performs favorably against the state-of-the-art methods, especially for detecting the deliberately hidden items.
arXiv Detail & Related papers (2021-08-16T11:14:16Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.