ED$^4$: Explicit Data-level Debiasing for Deepfake Detection
- URL: http://arxiv.org/abs/2408.06779v1
- Date: Tue, 13 Aug 2024 10:05:20 GMT
- Title: ED$^4$: Explicit Data-level Debiasing for Deepfake Detection
- Authors: Jikang Cheng, Ying Zhang, Qin Zou, Zhiyuan Yan, Chao Liang, Zhongyuan Wang, Chen Li,
- Abstract summary: Learning intrinsic bias from limited data has been considered the main reason for the failure of deepfake detection with generalizability.
We present ED$4$, a simple and effective strategy to address aforementioned biases explicitly at the data level.
We conduct extensive experiments to demonstrate its effectiveness and superiority over existing deepfake detection approaches.
- Score: 24.695989108814018
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Learning intrinsic bias from limited data has been considered the main reason for the failure of deepfake detection with generalizability. Apart from the discovered content and specific-forgery bias, we reveal a novel spatial bias, where detectors inertly anticipate observing structural forgery clues appearing at the image center, also can lead to the poor generalization of existing methods. We present ED$^4$, a simple and effective strategy, to address aforementioned biases explicitly at the data level in a unified framework rather than implicit disentanglement via network design. In particular, we develop ClockMix to produce facial structure preserved mixtures with arbitrary samples, which allows the detector to learn from an exponentially extended data distribution with much more diverse identities, backgrounds, local manipulation traces, and the co-occurrence of multiple forgery artifacts. We further propose the Adversarial Spatial Consistency Module (AdvSCM) to prevent extracting features with spatial bias, which adversarially generates spatial-inconsistent images and constrains their extracted feature to be consistent. As a model-agnostic debiasing strategy, ED$^4$ is plug-and-play: it can be integrated with various deepfake detectors to obtain significant benefits. We conduct extensive experiments to demonstrate its effectiveness and superiority over existing deepfake detection approaches.
Related papers
- DIP: Diffusion Learning of Inconsistency Pattern for General DeepFake Detection [18.116004258266535]
A transformer-based framework for Diffusion Inconsistency Learning (DIP) is proposed, which exploits directional inconsistencies for deepfake video detection.
Our method could effectively identify forgery clues and achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-10-31T06:26:00Z) - Generative Edge Detection with Stable Diffusion [52.870631376660924]
Edge detection is typically viewed as a pixel-level classification problem mainly addressed by discriminative methods.
We propose a novel approach, named Generative Edge Detector (GED), by fully utilizing the potential of the pre-trained stable diffusion model.
We conduct extensive experiments on multiple datasets and achieve competitive performance.
arXiv Detail & Related papers (2024-10-04T01:52:23Z) - Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - Detecting Adversarial Data via Perturbation Forgery [28.637963515748456]
adversarial detection aims to identify and filter out adversarial data from the data flow based on discrepancies in distribution and noise patterns between natural and adversarial data.
New attacks based on generative models with imbalanced and anisotropic noise patterns evade detection.
We propose Perturbation Forgery, which includes noise distribution perturbation, sparse mask generation, and pseudo-adversarial data production, to train an adversarial detector capable of detecting unseen gradient-based, generative-model-based, and physical adversarial attacks.
arXiv Detail & Related papers (2024-05-25T13:34:16Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
We propose a simple yet effective deepfake detector called LSDA.
It is based on a idea: representations with a wider variety of forgeries should be able to learn a more generalizable decision boundary.
We show that our proposed method is surprisingly effective and transcends state-of-the-art detectors across several widely used benchmarks.
arXiv Detail & Related papers (2023-11-19T09:41:10Z) - Self-Supervised Graph Transformer for Deepfake Detection [1.8133635752982105]
Deepfake detection methods have shown promising results in recognizing forgeries within a given dataset.
Deepfake detection system must remain impartial to forgery types, appearance, and quality for guaranteed generalizable detection performance.
This study introduces a deepfake detection framework, leveraging a self-supervised pre-training model that delivers exceptional generalization ability.
arXiv Detail & Related papers (2023-07-27T17:22:41Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - FedForgery: Generalized Face Forgery Detection with Residual Federated
Learning [87.746829550726]
Existing face forgery detection methods directly utilize the obtained public shared or centralized data for training.
The paper proposes a novel generalized residual Federated learning for face Forgery detection (FedForgery)
Experiments conducted on publicly available face forgery detection datasets prove the superior performance of the proposed FedForgery.
arXiv Detail & Related papers (2022-10-18T03:32:18Z) - Towards Real-World Prohibited Item Detection: A Large-Scale X-ray
Benchmark [53.9819155669618]
This paper presents a large-scale dataset, named as PIDray, which covers various cases in real-world scenarios for prohibited item detection.
With an intensive amount of effort, our dataset contains $12$ categories of prohibited items in $47,677$ X-ray images with high-quality annotated segmentation masks and bounding boxes.
The proposed method performs favorably against the state-of-the-art methods, especially for detecting the deliberately hidden items.
arXiv Detail & Related papers (2021-08-16T11:14:16Z) - Line-Circle-Square (LCS): A Multilayered Geometric Filter for Edge-Based
Detection [2.4054377316708964]
The proposed filter applies detection, tracking and learning to each defined expert to extract higher level information for judging scenes without over-calculation.
The experiment validates the effectiveness of the proposed filter in terms of detection precision and resource usage in both experimental and real-world scenarios.
arXiv Detail & Related papers (2020-08-21T05:28:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.