Self-Supervised Gait Encoding with Locality-Aware Attention for Person
Re-Identification
- URL: http://arxiv.org/abs/2008.09435v1
- Date: Fri, 21 Aug 2020 12:03:17 GMT
- Title: Self-Supervised Gait Encoding with Locality-Aware Attention for Person
Re-Identification
- Authors: Haocong Rao, Siqi Wang, Xiping Hu, Mingkui Tan, Huang Da, Jun Cheng,
Bin Hu
- Abstract summary: Gait-based person re-identification (Re-ID) is valuable for safety-critical applications.
We propose a generic gait encoding approach that can utilize unlabeled skeleton data to learn gait representations in a self-supervised manner.
Our approach typically improves existing skeleton-based methods by 10-20% Rank-1 accuracy.
- Score: 46.28501210524173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gait-based person re-identification (Re-ID) is valuable for safety-critical
applications, and using only 3D skeleton data to extract discriminative gait
features for person Re-ID is an emerging open topic. Existing methods either
adopt hand-crafted features or learn gait features by traditional supervised
learning paradigms. Unlike previous methods, we for the first time propose a
generic gait encoding approach that can utilize unlabeled skeleton data to
learn gait representations in a self-supervised manner. Specifically, we first
propose to introduce self-supervision by learning to reconstruct input skeleton
sequences in reverse order, which facilitates learning richer high-level
semantics and better gait representations. Second, inspired by the fact that
motion's continuity endows temporally adjacent skeletons with higher
correlations ("locality"), we propose a locality-aware attention mechanism that
encourages learning larger attention weights for temporally adjacent skeletons
when reconstructing current skeleton, so as to learn locality when encoding
gait. Finally, we propose Attention-based Gait Encodings (AGEs), which are
built using context vectors learned by locality-aware attention, as final gait
representations. AGEs are directly utilized to realize effective person Re-ID.
Our approach typically improves existing skeleton-based methods by 10-20%
Rank-1 accuracy, and it achieves comparable or even superior performance to
multi-modal methods with extra RGB or depth information. Our codes are
available at https://github.com/Kali-Hac/SGE-LA.
Related papers
- Rethinking Prior Information Generation with CLIP for Few-Shot Segmentation [14.998239253285394]
We propose to replace the visual prior representation with the visual-text alignment capacity to capture more reliable guidance.
We show that our method obtains a clearly substantial improvement and reaches the new state-of-the-art performance.
arXiv Detail & Related papers (2024-05-14T09:28:25Z) - Distillation-guided Representation Learning for Unconstrained Gait Recognition [50.0533243584942]
We propose a framework, termed GAit DEtection and Recognition (GADER), for human authentication in challenging outdoor scenarios.
GADER builds discriminative features through a novel gait recognition method, where only frames containing gait information are used.
We evaluate our method on multiple State-of-The-Arts(SoTA) gait baselines and demonstrate consistent improvements on indoor and outdoor datasets.
arXiv Detail & Related papers (2023-07-27T01:53:57Z) - Improving Deep Representation Learning via Auxiliary Learnable Target Coding [69.79343510578877]
This paper introduces a novel learnable target coding as an auxiliary regularization of deep representation learning.
Specifically, a margin-based triplet loss and a correlation consistency loss on the proposed target codes are designed to encourage more discriminative representations.
arXiv Detail & Related papers (2023-05-30T01:38:54Z) - SimMC: Simple Masked Contrastive Learning of Skeleton Representations
for Unsupervised Person Re-Identification [63.903237777588316]
We present a generic Simple Masked Contrastive learning (SimMC) framework to learn effective representations from unlabeled 3D skeletons for person re-ID.
Specifically, to fully exploit skeleton features within each skeleton sequence, we first devise a masked prototype contrastive learning (MPC) scheme.
Then, we propose the masked intra-sequence contrastive learning (MIC) to capture intra-sequence pattern consistency between subsequences.
arXiv Detail & Related papers (2022-04-21T00:19:38Z) - Towards a Deeper Understanding of Skeleton-based Gait Recognition [4.812321790984493]
In recent years, most gait recognition methods used the person's silhouette to extract the gait features.
Model-based methods do not suffer from these problems and are able to represent the temporal motion of body joints.
In this work, we propose an approach based on Graph Convolutional Networks (GCNs) that combines higher-order inputs, and residual networks.
arXiv Detail & Related papers (2022-04-16T18:23:37Z) - SelfGait: A Spatiotemporal Representation Learning Method for
Self-supervised Gait Recognition [24.156710529672775]
Gait recognition plays a vital role in human identification since gait is a unique biometric feature that can be perceived at a distance.
Existing gait recognition methods can learn gait features from gait sequences in different ways, but the performance of gait recognition suffers from labeled data.
We propose a self-supervised gait recognition method, termed SelfGait, which takes advantage of the massive, diverse, unlabeled gait data as a pre-training process.
arXiv Detail & Related papers (2021-03-27T05:15:39Z) - Watching You: Global-guided Reciprocal Learning for Video-based Person
Re-identification [82.6971648465279]
We propose a novel Global-guided Reciprocal Learning framework for video-based person Re-ID.
Our approach can achieve better performance than other state-of-the-art approaches.
arXiv Detail & Related papers (2021-03-07T12:27:42Z) - A Self-Supervised Gait Encoding Approach with Locality-Awareness for 3D
Skeleton Based Person Re-Identification [65.18004601366066]
Person re-identification (Re-ID) via gait features within 3D skeleton sequences is a newly-emerging topic with several advantages.
This paper proposes a self-supervised gait encoding approach that can leverage unlabeled skeleton data to learn gait representations for person Re-ID.
arXiv Detail & Related papers (2020-09-05T16:06:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.