論文の概要: Systematic Crosstalk Mitigation for Superconducting Qubits via
Frequency-Aware Compilation
- arxiv url: http://arxiv.org/abs/2008.09503v1
- Date: Fri, 21 Aug 2020 14:35:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 08:00:03.295113
- Title: Systematic Crosstalk Mitigation for Superconducting Qubits via
Frequency-Aware Compilation
- Title(参考訳): 周波数アウェアコンパイルによる超伝導量子ビットの系統的クロストーク緩和
- Authors: Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin, Richard Rines, Thomas
Propson, Frederic T. Chong
- Abstract要約: 現在のNISQ(Noisy Intermediate-Scale Quantum)コンピュータにおける重要な課題の1つは、高忠実な量子ゲートを持つ量子システムを制御することである。
NISQコンピュータ上での短期量子プログラム実行時のクロストークノイズの理解と緩和のための体系的なアプローチを動機付けている。
本稿では,入力プログラムに従って量子ビット周波数を体系的に調整することで,周波数群集を緩和する汎用ソフトウェアソリューションを提案する。
- 参考スコア(独自算出の注目度): 3.2460743209388094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the key challenges in current Noisy Intermediate-Scale Quantum (NISQ)
computers is to control a quantum system with high-fidelity quantum gates.
There are many reasons a quantum gate can go wrong -- for superconducting
transmon qubits in particular, one major source of gate error is the unwanted
crosstalk between neighboring qubits due to a phenomenon called frequency
crowding. We motivate a systematic approach for understanding and mitigating
the crosstalk noise when executing near-term quantum programs on
superconducting NISQ computers. We present a general software solution to
alleviate frequency crowding by systematically tuning qubit frequencies
according to input programs, trading parallelism for higher gate fidelity when
necessary. The net result is that our work dramatically improves the crosstalk
resilience of tunable-qubit, fixed-coupler hardware, matching or surpassing
other more complex architectural designs such as tunable-coupler systems. On
NISQ benchmarks, we improve worst-case program success rate by 13.3x on
average, compared to existing traditional serialization strategies.
- Abstract(参考訳): 現在のNISQ(Noisy Intermediate-Scale Quantum)コンピュータにおける重要な課題の1つは、高忠実な量子ゲートを持つ量子システムを制御することである。
量子ゲートが故障する理由は多数あり、特にトランスモン量子ビットを超伝導するためには、隣接する量子ビット間の不必要なクロストークが周波数群衆と呼ばれる現象に起因する。
超伝導nisqコンピュータ上での短期量子プログラム実行におけるクロストークノイズの理解と緩和のための体系的アプローチを動機付ける。
本稿では,入力プログラムに従ってキュービット周波数を体系的に調整し,必要に応じて高いゲート忠実度を並列処理することで,周波数混雑を軽減するための一般的なソフトウェアソリューションを提案する。
その結果,チューナブルキュービット,固定結合型ハードウェアのクロストークレジリエンスが劇的に向上し,チューナブル結合型システムなど,他の複雑なアーキテクチャ設計と一致するか上回っていることがわかった。
NISQベンチマークでは、従来のシリアライズ戦略と比較して、最悪のプログラム成功率を平均13.3倍改善する。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Estimating the Effect of Crosstalk Error on Circuit Fidelity Using Noisy Intermediate-Scale Quantum Devices [0.0]
並列命令間のクロストークは量子状態を破損させ、不正なプログラム実行を引き起こす。
NISQ装置におけるクロストーク誤り効果の解析を行う。
実験では,3種類のIBM量子デバイスのクロストーク誤差モデルについて実験を行った。
論文 参考訳(メタデータ) (2024-02-10T13:42:14Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Mitigating crosstalk errors by randomized compiling: Simulation of the
BCS model on a superconducting quantum computer [41.94295877935867]
CNOT2量子ゲートを起点とするクロストークエラーは、多くの量子コンピューティングプラットフォームにおけるエラーの重要な原因である。
隣接するキュービットの特別な処理を含むランダム化コンパイルプロトコルを拡張し,適用する。
隣り合う量子ビットのツイリングは、新しい量子ビットや回路を追加することなく、ノイズ推定プロトコルを劇的に改善することを示します。
論文 参考訳(メタデータ) (2023-05-03T18:00:02Z) - Scalable High-Performance Fluxonium Quantum Processor [0.0]
クロストークが抑制されたコンパクトな高コヒーレンスフラクソニウムに基づく超伝導量子情報プロセッサを提案する。
クロス共鳴制御NOTと差動AC-Stark制御Z演算を数値的に検討し、最大1GHzの量子ビットデチューニング帯域に対する低ゲート誤差を明らかにする。
論文 参考訳(メタデータ) (2022-01-23T21:49:04Z) - Quantum crosstalk analysis for simultaneous gate operations on
superconducting qubits [12.776712619117092]
量子クロストークがキュービットアーキテクチャにおける同時ゲート操作に与える影響について検討する。
マイクロ波駆動の単一量子ゲートでは、量子ビット結合によるドレッシングが非無視のクロスドライブエラーを引き起こす可能性がある。
論文 参考訳(メタデータ) (2021-10-25T01:21:04Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
相互接続されたトランモン量子ビットを持つ超超伝導量子プロセッサはノイズが多く、様々なエラーを起こしやすい。
固定周波数トランスモンアーキテクチャにおけるキュービット間のZZ結合は常に存在し、コヒーレントかつ非コヒーレントなクロストークエラーに寄与する。
我々は,クロストークを抑えるために動的デカップリングを用いることを提案し,IBM量子クラウドプロセッサの実験を通じて,このスキームの成功を実証する。
論文 参考訳(メタデータ) (2021-08-10T09:16:05Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
本稿では,現実的な雑音に依拠する新しい量子通信方式を提案する。
性能分析の結果,提案手法は競争力のあるQBER, 利得, 利得を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-22T13:06:12Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。