Theoretical investigation of the Freeman resonance in the dissociative
ionization of $H_2+$
- URL: http://arxiv.org/abs/2008.09528v4
- Date: Mon, 25 Jan 2021 16:17:50 GMT
- Title: Theoretical investigation of the Freeman resonance in the dissociative
ionization of $H_2+$
- Authors: Jinzhen Zhu
- Abstract summary: The dissociative ionization of $H+$ in linearly polarized, 400 nm laser pulses is simulated by solving a three-particle time-dependent Schr"odinger equation in full dimensionality.
The analysis of the wavefunction for electrons and protons after the pulse are presented, where we find $U_p$ is absorbed by the Freeman resonances between two excited ungerade states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dissociative ionization of $H_2^+$ in linearly polarized, 400 nm laser
pulses is simulated by solving a three-particle time-dependent Schr\"odinger
equation in full dimensionality. The joint energy spectra (JES) are computed
for $\cos^8$ and flat-top envelopes using the time-dependent surface flux
(tSurff) methods. In JES, the energy sharing $n$ photon energies $\omega$ of
nuclear kinetic energy release (KER) $E_N$ and electronic KER $E_e$ are well
represented by $E_N+E_e=n\omega-U_p+E_0$ for $\cos^8$ pulses, but satisfy
$E_N+E_e=n\omega+E_0$ for flat-top envelope, exposing a deviation of the
ponderomotive energy $U_p$, which has been observed in experiments, where $E_0$
is the ground energy of $H_2^+$. The analysis of the wavefunction for electrons
and protons after the pulse are presented, where we find $U_p$ is absorbed by
the Freeman resonances between two excited ungerade states.
Related papers
- On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Rapid generation of all-optical $^{39}$K Bose-Einstein condensates using
a low-field Feshbach resonance [58.720142291102135]
We investigate the production of all-optical $39$K Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near $33$ G.
We are able to produce fully condensed ensembles with $5.8times104$ atoms within $850$ ms evaporation time at a scattering length of $232.
Based on our findings we describe routes towards high-flux sources of ultra-cold potassium for inertial sensing.
arXiv Detail & Related papers (2022-01-12T16:39:32Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - Universal energy-dependent pseudopotential for the two-body problem of
confined ultracold atoms [4.514953268743484]
Two-body scattering amplitude and energy spectrum of confined ultracold atoms are of fundamental importance for studies of ultracold atom physics.
For many systems, one can efficiently calculate these quantities via the zero-range Huang-Yang pseudopotential (HYP)
We show a method based on the quantum defect theory, with which $hat a_rm eff$ can be analytically derived for systems with van der Waals inter-atomic interaction.
arXiv Detail & Related papers (2021-08-02T16:34:04Z) - Ultracold spin-balanced fermionic quantum liquids with renormalized
$P$-wave interactions [0.0]
We consider a spin-balanced degenerate gas of spin-1/2 fermions governed by low-energy $P$-wave interactions.
The energy per particle $barcalE$ in the many-body system is calculated by resumming the ladder diagrams.
arXiv Detail & Related papers (2021-07-16T18:00:01Z) - Many-body theory for positronium scattering and pickoff annihilation in
noble-gas atoms [0.0]
Many-body-theory approach to positronium-atom interactions developed in [Phys. Rev. Lett. textbf120, 183402] is applied to the sequence of noble-gas atoms He-Xe.
The Dyson equation is solved separately for an electron and positron moving in the field of the atom, with the entire system enclosed in a hard-wall cavity.
arXiv Detail & Related papers (2021-05-14T10:17:16Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - On the four-body problem in the Born-Oppenheimer approximation [0.0]
The model allows exact solvability and a critical analysis of the Born-Oppenheimer approximation.
It is shown that the sum of the first two terms of the Puiseux series, in powers of the dimensionless parameter $sigma=fracmM$, coincide exactly with the values obtained in the Born-Oppenheimer approximation.
arXiv Detail & Related papers (2020-07-29T16:43:03Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.