Orderly Disorder in Point Cloud Domain
- URL: http://arxiv.org/abs/2008.09634v1
- Date: Fri, 21 Aug 2020 18:18:09 GMT
- Title: Orderly Disorder in Point Cloud Domain
- Authors: Morteza Ghahremani, Bernard Tiddeman, Yonghuai Liu and Ardhendu Behera
- Abstract summary: We propose a smart yet simple deep network for analysis of 3D models using orderly disorder' theory.
Our method extracts the deep patterns inside a 3D object via creating a dynamic link to seek the most stable patterns.
Our model alleviates the vanishing-gradient problem, strengthens dynamic link propagation and substantially reduces the number of parameters.
- Score: 25.36505222529359
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the real world, out-of-distribution samples, noise and distortions exist
in test data. Existing deep networks developed for point cloud data analysis
are prone to overfitting and a partial change in test data leads to
unpredictable behaviour of the networks. In this paper, we propose a smart yet
simple deep network for analysis of 3D models using `orderly disorder' theory.
Orderly disorder is a way of describing the complex structure of disorders
within complex systems. Our method extracts the deep patterns inside a 3D
object via creating a dynamic link to seek the most stable patterns and at
once, throws away the unstable ones. Patterns are more robust to changes in
data distribution, especially those that appear in the top layers. Features are
extracted via an innovative cloning decomposition technique and then linked to
each other to form stable complex patterns. Our model alleviates the
vanishing-gradient problem, strengthens dynamic link propagation and
substantially reduces the number of parameters. Extensive experiments on
challenging benchmark datasets verify the superiority of our light network on
the segmentation and classification tasks, especially in the presence of noise
wherein our network's performance drops less than 10% while the
state-of-the-art networks fail to work.
Related papers
- Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
We propose a graph neural network model embedded with a local Spherical Euclidean 3D equivariance property through SE(3) message passing based propagation.
Our model is composed mainly of a descriptor module, equivariant graph layers, match similarity, and the final regression layers.
Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T06:48:01Z) - SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
We propose a novel diffusion model reconstruction framework tailored for 3D seismic data.
We introduce a 3D neural network architecture into the diffusion model, successfully extending the 2D diffusion model to 3D space.
Our method exhibits superior reconstruction accuracy when applied to both field datasets and synthetic datasets.
arXiv Detail & Related papers (2024-03-18T05:10:13Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks? [18.92828441607381]
We show that embeddings induce a model that fits observations well but simultaneously has incorrect dynamical behaviours.
We propose a simple embedding-free alternative based on parametrising two additive vector-field components.
arXiv Detail & Related papers (2023-05-20T12:41:47Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
We propose a latent network embedding model based on adversarial graph auto-encoders.
Under this framework, the problem of discovering latent structures is formulated as inferring the latent ties from partial observations.
arXiv Detail & Related papers (2021-09-30T16:49:46Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive
Compression [40.35734017517066]
Nested networks or slimmable networks are neural networks whose architectures can be adjusted instantly during testing time.
Recent studies have focused on a "nested dropout" layer, which is able to order the nodes of a layer by importance during training.
arXiv Detail & Related papers (2021-01-27T12:34:58Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
We investigate a design space that is usually overlooked, i.e. adjusting the channel configurations of predefined networks.
We find that this adjustment can be achieved by shrinking widened baseline networks and leads to superior performance.
Experiments are conducted on various networks and datasets for image classification, visual tracking and image restoration.
arXiv Detail & Related papers (2020-06-29T17:59:26Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.