Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks?
- URL: http://arxiv.org/abs/2305.12185v1
- Date: Sat, 20 May 2023 12:41:47 GMT
- Title: Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks?
- Authors: Bing Liu, Wei Luo, Gang Li, Jing Huang, Bo Yang
- Abstract summary: We show that embeddings induce a model that fits observations well but simultaneously has incorrect dynamical behaviours.
We propose a simple embedding-free alternative based on parametrising two additive vector-field components.
- Score: 18.92828441607381
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As deep learning gains popularity in modelling dynamical systems, we expose
an underappreciated misunderstanding relevant to modelling dynamics on
networks. Strongly influenced by graph neural networks, latent vertex
embeddings are naturally adopted in many neural dynamical network models.
However, we show that embeddings tend to induce a model that fits observations
well but simultaneously has incorrect dynamical behaviours. Recognising that
previous studies narrowly focus on short-term predictions during the transient
phase of a flow, we propose three tests for correct long-term behaviour, and
illustrate how an embedding-based dynamical model fails these tests, and
analyse the causes, particularly through the lens of topological conjugacy. In
doing so, we show that the difficulties can be avoided by not using embedding.
We propose a simple embedding-free alternative based on parametrising two
additive vector-field components. Through extensive experiments, we verify that
the proposed model can reliably recover a broad class of dynamics on different
network topologies from time series data.
Related papers
- Neural Persistence Dynamics [8.197801260302642]
We consider the problem of learning the dynamics in the topology of time-evolving point clouds.
Our proposed model - $textitNeural Persistence Dynamics$ - substantially outperforms the state-of-the-art across a diverse set of parameter regression tasks.
arXiv Detail & Related papers (2024-05-24T17:20:18Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - A critical look at deep neural network for dynamic system modeling [0.0]
This paper questions the capability of (deep) neural networks for the modeling of dynamic systems using input-output data.
For the identification of linear time-invariant (LTI) dynamic systems, two representative neural network models are compared.
For the LTI system, both LSTM and CFNN fail to deliver consistent models even in noise-free cases.
arXiv Detail & Related papers (2023-01-27T09:03:05Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Action-Conditional Recurrent Kalman Networks For Forward and Inverse
Dynamics Learning [17.80270555749689]
Estimating accurate forward and inverse dynamics models is a crucial component of model-based control for robots.
We present two architectures for forward model learning and one for inverse model learning.
Both architectures significantly outperform exist-ing model learning frameworks as well as analytical models in terms of prediction performance.
arXiv Detail & Related papers (2020-10-20T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.