論文の概要: Model-Free Episodic Control with State Aggregation
- arxiv url: http://arxiv.org/abs/2008.09685v1
- Date: Fri, 21 Aug 2020 21:20:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 20:44:38.447669
- Title: Model-Free Episodic Control with State Aggregation
- Title(参考訳): 状態集約を用いたモデルフリーエピソディック制御
- Authors: Rafael Pinto
- Abstract要約: 本研究は,これらの要件の簡易化とMFEC(Model-Free Episodic Control)への応用を提案する。
アタリゲームの実験では、これはMFECの計算要求を減らし、性能を著しく損なわないことを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Episodic control provides a highly sample-efficient method for reinforcement
learning while enforcing high memory and computational requirements. This work
proposes a simple heuristic for reducing these requirements, and an application
to Model-Free Episodic Control (MFEC) is presented. Experiments on Atari games
show that this heuristic successfully reduces MFEC computational demands while
producing no significant loss of performance when conservative choices of
hyperparameters are used. Consequently, episodic control becomes a more
feasible option when dealing with reinforcement learning tasks.
- Abstract(参考訳): エピソディック制御は、高記憶力と計算能力の要求を強制しながら強化学習を高度にサンプル効率良く行う方法を提供する。
本研究はこれらの要件を緩和するための単純なヒューリスティックを提案し,MFEC(Model-Free Episodic Control)に適用する。
アタリゲームの実験では、このヒューリスティックはMFECの計算要求を減らし、ハイパーパラメータの保守的な選択が使用されると性能が著しく低下しないことを示した。
したがって、強化学習タスクを扱う場合、エピソディクス制御はより実現可能な選択肢となる。
関連論文リスト
- MOSEAC: Streamlined Variable Time Step Reinforcement Learning [14.838483990647697]
マルチ目的ソフト・エクササイズ・アクタ・クライブ法(MOSEAC)を提案する。
MOSEACは、トレーニング中のタスク報酬の観測傾向に基づく適応型報酬スキームを特徴とする。
ニュートンのキネマティクス環境におけるシミュレーションによりMOSEAC法の有効性を検証した。
論文 参考訳(メタデータ) (2024-06-03T16:51:57Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
ロボット工学の応用において、スムーズな制御信号はシステム摩耗とエネルギー効率を減らすために一般的に好まれる。
本研究では,離散的な動作空間を粗い状態から細かい制御分解能まで拡大することにより,この性能ギャップを埋めることを目的とする。
我々の研究は、値分解とアダプティブ・コントロール・リゾリューションが組み合わさることで、単純な批判のみのアルゴリズムが得られ、連続制御タスクにおいて驚くほど高い性能が得られることを示唆している。
論文 参考訳(メタデータ) (2024-04-05T17:58:37Z) - Model-based deep reinforcement learning for accelerated learning from flow simulations [0.0]
フロー制御アプリケーションにおけるモデルベース強化学習の利点を実証する。
具体的には, 流れシミュレーションから採取した軌道と, 環境モデルのアンサンブルから採取した軌道とを交互に組み合わせることで, 政策を最適化する。
モデルベースの学習は、流動的なピンボールテストケースに対して、トレーニング全体の時間を最大85%削減する。
論文 参考訳(メタデータ) (2024-02-26T13:01:45Z) - MPC-Inspired Reinforcement Learning for Verifiable Model-Free Control [5.9867297878688195]
モデル予測制御(MPC)からインスピレーションを得た新しいパラメータ化コントローラを導入する。
コントローラは線形MPC問題の擬似プログラミング(QP)解法に似ており、コントローラのパラメータはDeep Reinforcement Learning(DRL)を介して訓練される。
提案したコントローラは, MPCに比べて計算効率が優れ, コントローラよりも学習するパラメータが少ない。
論文 参考訳(メタデータ) (2023-12-08T19:33:22Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
本稿ではパラメータ共有言語モデルの推論効率を向上させる手法を提案する。
また、完全あるいは部分的に共有されたモデルにつながる単純な事前学習手法を提案する。
その結果,本手法が自己回帰的および自己符号化的PLMに与える影響が示された。
論文 参考訳(メタデータ) (2023-10-19T15:13:58Z) - Contrastive Example-Based Control [163.6482792040079]
報酬関数ではなく多段階遷移の暗黙的なモデルを学ぶオフラインのサンプルベース制御法を提案する。
状態ベースおよび画像ベースのオフライン制御タスクの範囲で、学習された報酬関数を使用するベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-07-24T19:43:22Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
強化学習(Reinforcement Learning, RL)は、自動制御アプリケーションにおける将来的なトピックである。
アクター批判に基づくRLコントローラのためのイニシアティブアクション状態拡張(IASA)が導入される。
この拡張は専門家の知識を必要とせず、アプローチモデルを無償にしておく。
論文 参考訳(メタデータ) (2022-01-31T16:29:19Z) - Residual Reinforcement Learning from Demonstrations [51.56457466788513]
報酬信号の最大化のために,従来のフィードバックコントローラからの制御動作を適用することで,ロボット作業の課題を解決する手段として,残留強化学習(Residual reinforcement learning, RL)が提案されている。
視覚的インプットから学習するための残差定式化を拡張し,実演を用いて報酬をスパースする。
6-DoFのUR5アームと28-DoFのデキスタラスハンドのシミュレーション操作に関する実験的評価は、デモからの残留RLが、行動クローニングやRL微調整よりも柔軟に、見えない環境条件に一般化できることを実証している。
論文 参考訳(メタデータ) (2021-06-15T11:16:49Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。