論文の概要: Unsupervised Domain Adaptation via Discriminative Manifold Propagation
- arxiv url: http://arxiv.org/abs/2008.10030v1
- Date: Sun, 23 Aug 2020 12:31:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 02:37:11.449211
- Title: Unsupervised Domain Adaptation via Discriminative Manifold Propagation
- Title(参考訳): 識別的マニフォールド伝播による教師なし領域適応
- Authors: You-Wei Luo, Chuan-Xian Ren, Dao-Qing Dai and Hong Yan
- Abstract要約: 教師なしドメイン適応は、ラベル付きソースドメインからラベルなしターゲットドメインへのリッチな情報を活用するのに効果的である。
提案手法は,バニラおよび部分的設定を含む一連のドメイン適応問題に対処するために利用できる。
- 参考スコア(独自算出の注目度): 26.23123292060868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation is effective in leveraging rich information
from a labeled source domain to an unlabeled target domain. Though deep
learning and adversarial strategy made a significant breakthrough in the
adaptability of features, there are two issues to be further studied. First,
hard-assigned pseudo labels on the target domain are arbitrary and error-prone,
and direct application of them may destroy the intrinsic data structure.
Second, batch-wise training of deep learning limits the characterization of the
global structure. In this paper, a Riemannian manifold learning framework is
proposed to achieve transferability and discriminability simultaneously. For
the first issue, this framework establishes a probabilistic discriminant
criterion on the target domain via soft labels. Based on pre-built prototypes,
this criterion is extended to a global approximation scheme for the second
issue. Manifold metric alignment is adopted to be compatible with the embedding
space. The theoretical error bounds of different alignment metrics are derived
for constructive guidance. The proposed method can be used to tackle a series
of variants of domain adaptation problems, including both vanilla and partial
settings. Extensive experiments have been conducted to investigate the method
and a comparative study shows the superiority of the discriminative manifold
learning framework.
- Abstract(参考訳): 教師なしドメイン適応はラベル付きソースドメインからラベルなしターゲットドメインへのリッチな情報を活用するのに有効である。
深い学習と敵対的戦略は特徴の適応性に大きなブレークスルーをもたらしたが、さらに研究すべき問題が2つある。
まず、ターゲットドメイン上のハードアサインされた擬似ラベルは任意でエラーを起こし、それらの直接適用は本質的なデータ構造を破壊する可能性がある。
第二に、深層学習のバッチワイドトレーニングは、グローバル構造の特徴づけを制限する。
本稿では,移動性と識別性を同時に実現するために,リーマン多様体学習フレームワークを提案する。
第一に、このフレームワークはソフトラベルを介してターゲットドメインの確率論的判別基準を確立する。
事前構築されたプロトタイプに基づいて、この基準は第2号のグローバル近似スキームに拡張される。
多様体計量アライメントは埋め込み空間と互換性を持つように採用されている。
異なるアライメントメトリックの理論的誤差境界は、構成的ガイダンスのために導出される。
提案手法は、バニラと部分的設定の両方を含む、ドメイン適応問題の一連の変種に取り組むのに使うことができる。
本手法に関する広範囲な実験を行い, 判別的多様体学習フレームワークの優位性を比較検討した。
関連論文リスト
- Bi-discriminator Domain Adversarial Neural Networks with Class-Level
Gradient Alignment [87.8301166955305]
そこで本研究では,クラスレベルのアライメントアライメントを有するバイディミネータドメイン対向ニューラルネットワークを提案する。
BACGは、領域分布の整合性を改善するために勾配信号と二階確率推定を利用する。
さらに、対照的な学習にインスパイアされ、トレーニングプロセスを大幅に短縮できるメモリバンクベースの変種であるFast-BACGを開発した。
論文 参考訳(メタデータ) (2023-10-21T09:53:17Z) - Discriminative Radial Domain Adaptation [62.22362756424971]
本稿では、ソースとターゲットドメインを共有ラジアル構造を介してブリッジする差別的ラジアルドメイン適応(DRDR)を提案する。
このような固有識別構造を移行することで,特徴伝達性と識別可能性の同時向上が期待できることを示す。
提案手法は,様々なタスクに対する最先端のアプローチを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2023-01-01T10:56:31Z) - Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation [31.150256154504696]
Unsupervised Domain Adaptation (UDA)は、限られた実験データセットから現実の制約のないドメインへのディープラーニングの展開を促進する。
ほとんどのUDAアプローチは、共通の埋め込み空間内の機能を整列させ、ターゲット予測に共有分類器を適用する。
本稿では,異なる領域に着目した2つの個別空間における特徴アライメントを同時に実施し,各領域に対してドメイン指向の分類器を作成することを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:38:37Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
本稿では,ドメイン間のギャップを粗い粒度から細かな粒度に埋める新しい逆スコアリングネットワーク (ASNet) を提案する。
3組のマイグレーション実験により,提案手法が最先端のカウント性能を実現することを示す。
論文 参考訳(メタデータ) (2021-07-27T14:47:24Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z) - Learning transferable and discriminative features for unsupervised
domain adaptation [6.37626180021317]
教師なしのドメイン適応は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を移すことで、この課題を克服することができる。
本稿では,これら2つの目的を同時に最適化するために,教師なしドメイン適応(Learning)のためのテキスト学習トランスフェラブルと識別機能と呼ばれる新しい手法を提案する。
5つの実世界のデータセットを用いて総合実験を行い,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-03-26T03:15:09Z) - Unsupervised Domain Adaptation via Discriminative Manifold Embedding and
Alignment [23.72562139715191]
教師なしドメイン適応は、ソースドメインから教師なしターゲットドメインへの豊富な情報を活用するのに効果的である。
対象領域のハードアサインされた擬似ラベルは、本質的なデータ構造に危険である。
一貫した多様体学習フレームワークは、一貫した伝達可能性と識別可能性を達成するために提案される。
論文 参考訳(メタデータ) (2020-02-20T11:06:41Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
教師なしのドメイン適応は、確立されたソースドメイン情報に依存するラベルなしのターゲットドメインを促進する。
従来の手法では、潜在空間におけるドメインの不一致を強制的に低減することで、本質的なデータ構造が破壊される。
本稿では、2つの中間領域をブリッジソースとターゲットドメインに補間する一貫した分類器を用いた双方向生成ドメイン適応モデルを提案する。
論文 参考訳(メタデータ) (2020-02-12T09:45:39Z) - Missing-Class-Robust Domain Adaptation by Unilateral Alignment for Fault
Diagnosis [3.786700931138978]
ドメイン適応は、ソースドメインの学習した知識を活用し、それをターゲットドメインに転送することで、モデルの性能を改善することを目的としています。
近年, 対象領域とソース領域の分散シフトを軽減するために, ドメイン逆法が特に成功している。
本稿では,ドメイン逆数法の性能がトレーニング中に不完全なターゲットラベル空間に対して脆弱であることを示す。
論文 参考訳(メタデータ) (2020-01-07T13:19:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。