論文の概要: HALO: Learning to Prune Neural Networks with Shrinkage
- arxiv url: http://arxiv.org/abs/2008.10183v3
- Date: Sun, 28 Feb 2021 04:26:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 08:56:45.838358
- Title: HALO: Learning to Prune Neural Networks with Shrinkage
- Title(参考訳): HALO: 収縮を伴うニューラルネットワークの創成を学ぶ
- Authors: Skyler Seto, Martin T. Wells, Wenyu Zhang
- Abstract要約: ディープニューラルネットワークは、構造化されていないデータから豊富な特徴セットを抽出することにより、さまざまなタスクで最先端のパフォーマンスを実現する。
提案手法は,(1)ネットワークプルーニング,(2)スパシティ誘導ペナルティによるトレーニング,(3)ネットワークの重みと連動してバイナリマスクをトレーニングすることである。
トレーニング可能なパラメータを用いて、与えられたネットワークの重みを適応的に分散化することを学ぶ階層適応ラッソ(Hierarchical Adaptive Lasso)という新しいペナルティを提案する。
- 参考スコア(独自算出の注目度): 5.283963846188862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks achieve state-of-the-art performance in a variety of
tasks by extracting a rich set of features from unstructured data, however this
performance is closely tied to model size. Modern techniques for inducing
sparsity and reducing model size are (1) network pruning, (2) training with a
sparsity inducing penalty, and (3) training a binary mask jointly with the
weights of the network. We study different sparsity inducing penalties from the
perspective of Bayesian hierarchical models and present a novel penalty called
Hierarchical Adaptive Lasso (HALO) which learns to adaptively sparsify weights
of a given network via trainable parameters. When used to train
over-parametrized networks, our penalty yields small subnetworks with high
accuracy without fine-tuning. Empirically, on image recognition tasks, we find
that HALO is able to learn highly sparse network (only 5% of the parameters)
with significant gains in performance over state-of-the-art magnitude pruning
methods at the same level of sparsity. Code is available at
https://github.com/skyler120/sparsity-halo.
- Abstract(参考訳): ディープニューラルネットワークは、非構造化データから豊富な特徴集合を抽出することで、さまざまなタスクで最先端のパフォーマンスを実現するが、この性能はモデルサイズと密接に関連している。
提案手法は,(1)ネットワークプルーニング,(2)スパシティ誘導ペナルティによるトレーニング,(3)ネットワークの重みと連動してバイナリマスクをトレーニングすることである。
ベイズ的階層モデルの観点から異なる間隔のペナルティを導出し、トレーニング可能なパラメータによって与えられたネットワークの重みを適応的に分散化することを学ぶ階層適応ラッソ(HALO)と呼ばれる新しいペナルティを示す。
過パラメータネットワークのトレーニングに使用する場合,このペナルティは,微調整をすることなく,高精度な小サブネットワークを実現する。
画像認識タスクにおいて,halo は高いスパースネットワーク(パラメータの5%のみ)を学習でき,同じレベルのスパース性で最先端のマグニチュードプルーニング法よりも性能が著しく向上することがわかった。
コードはhttps://github.com/skyler120/sparsity-haloで入手できる。
関連論文リスト
- Slimmable Networks for Contrastive Self-supervised Learning [69.9454691873866]
自己教師付き学習は、大規模なモデルを事前訓練する上で大きな進歩を遂げるが、小さなモデルでは苦労する。
追加の教師を必要とせず、訓練済みの小型モデルを得るための1段階のソリューションも導入する。
スリム化可能なネットワークは、完全なネットワークと、様々なネットワークを得るために一度にトレーニングできるいくつかの重み共有サブネットワークから構成される。
論文 参考訳(メタデータ) (2022-09-30T15:15:05Z) - Federated Progressive Sparsification (Purge, Merge, Tune)+ [15.08232397899507]
FedSparsifyは、プログレッシブ・ウェイト・マグニチュード・プルーニングに基づくスパーシフィケーション戦略である。
我々は,FedSparsifyが高空間性と学習性能の両方のサブネットワークを学習できることを実験的に示す。
論文 参考訳(メタデータ) (2022-04-26T16:45:53Z) - An Experimental Study of the Impact of Pre-training on the Pruning of a
Convolutional Neural Network [0.0]
近年、ディープニューラルネットワークは様々なアプリケーション領域で広く成功している。
ディープニューラルネットワークは通常、ネットワークの重みに対応する多数のパラメータを含む。
プルーニング法は特に、無関係な重みを識別して取り除くことにより、パラメータセットのサイズを減らそうとしている。
論文 参考訳(メタデータ) (2021-12-15T16:02:15Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - Layer Folding: Neural Network Depth Reduction using Activation
Linearization [0.0]
現代のデバイスは高いレベルの並列性を示すが、リアルタイムレイテンシはネットワークの深さに大きく依存している。
線形でない活性化を除去できるかどうかを学習し、連続的な線形層を1つに折り畳む方法を提案する。
我々は, CIFAR-10 と CIFAR-100 で事前訓練されたネットワークに適用し, それら全てを同様の深さの浅い形に変換できることを示す。
論文 参考訳(メタデータ) (2021-06-17T08:22:46Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch [75.69506249886622]
ディープニューラルネットワーク(DNN)におけるスパーシティは、資源制約された環境でモデルを圧縮し、加速するために広く研究されている。
本稿では,N:M細粒構造スパースネットワークのスクラッチからトレーニングを初めて行う。
論文 参考訳(メタデータ) (2021-02-08T05:55:47Z) - Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks [78.47459801017959]
Sparsityは、モバイル機器に適合する通常のネットワークのメモリフットプリントを減らすことができる。
ニューラルネットワークの要素を除去および追加するためのアプローチ、モデルの疎性を達成するための異なるトレーニング戦略、実際に疎性を利用するメカニズムについて説明する。
論文 参考訳(メタデータ) (2021-01-31T22:48:50Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
本稿では,畳み込みニューラルネットワークの学習にバックプロパゲーションと進化戦略の両方を用いるハイブリッド手法を提案する。
画像分類のタスクにおいて,提案手法は定期的な訓練において改善可能であることを示す。
論文 参考訳(メタデータ) (2020-04-15T17:52:48Z) - Differentiable Sparsification for Deep Neural Networks [0.0]
本稿では,ディープニューラルネットワークのための完全微分可能なスペーシフィケーション手法を提案する。
提案手法は,ネットワークのスパース化構造と重み付けの両方をエンドツーエンドに学習することができる。
私たちの知る限りでは、これが最初の完全に差別化可能なスパーシフィケーション手法である。
論文 参考訳(メタデータ) (2019-10-08T03:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。