論文の概要: A Hybrid Method for Training Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2005.04153v1
- Date: Wed, 15 Apr 2020 17:52:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 02:38:23.972099
- Title: A Hybrid Method for Training Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークのハイブリッド学習法
- Authors: Vasco Lopes, Paulo Fazendeiro
- Abstract要約: 本稿では,畳み込みニューラルネットワークの学習にバックプロパゲーションと進化戦略の両方を用いるハイブリッド手法を提案する。
画像分類のタスクにおいて,提案手法は定期的な訓練において改善可能であることを示す。
- 参考スコア(独自算出の注目度): 3.172761915061083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence algorithms have been steadily increasing in
popularity and usage. Deep Learning, allows neural networks to be trained using
huge datasets and also removes the need for human extracted features, as it
automates the feature learning process. In the hearth of training deep neural
networks, such as Convolutional Neural Networks, we find backpropagation, that
by computing the gradient of the loss function with respect to the weights of
the network for a given input, it allows the weights of the network to be
adjusted to better perform in the given task. In this paper, we propose a
hybrid method that uses both backpropagation and evolutionary strategies to
train Convolutional Neural Networks, where the evolutionary strategies are used
to help to avoid local minimas and fine-tune the weights, so that the network
achieves higher accuracy results. We show that the proposed hybrid method is
capable of improving upon regular training in the task of image classification
in CIFAR-10, where a VGG16 model was used and the final test results increased
0.61%, in average, when compared to using only backpropagation.
- Abstract(参考訳): 人工知能アルゴリズムの人気と利用は着実に増加している。
Deep Learningは、巨大なデータセットを使用してニューラルネットワークをトレーニングすることを可能にし、機能学習プロセスを自動化するため、人間の抽出された機能の必要性を取り除く。
畳み込みニューラルネットワーク(Convolutional Neural Networks)のような深層ニューラルネットワークを訓練する余地では、与えられた入力に対するネットワークの重みに関する損失関数の勾配を計算することによって、ネットワークの重みを調整して、与えられたタスクでよりよく機能するようにすることで、バックプロパゲーションが得られます。
本稿では,畳み込みニューラルネットワークを学習するために,バックプロパゲーションと進化戦略の両方を用いたハイブリッド手法を提案する。
提案手法は,VGG16モデルを用いたCIFAR-10における画像分類のタスクにおいて,通常の訓練において改善が可能であり,最終試験結果は,バックプロパゲーションのみを用いた場合に比べて平均0.61%増加した。
関連論文リスト
- Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
我々は,一般的なDGDアルゴリズムを用いて学習した広範ニューラルネットワークの学習力学を,明示的で非漸近的に特徴づける。
我々は,誤りや誤りを正確に予測し,分析結果を検証した。
論文 参考訳(メタデータ) (2024-09-23T17:57:58Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
現在の実践は、性能予測のためのモデルトレーニングにおいて高価な計算コストを必要とする。
本稿では,学習中のシナプス接続(エッジ)上の制御ダイナミクスを解析し,ニューラルネットワーク選択のための新しいフレームワークを提案する。
我々のフレームワークは、ニューラルネットワークトレーニング中のバックプロパゲーションがシナプス接続の動的進化と等価であるという事実に基づいて構築されている。
論文 参考訳(メタデータ) (2022-01-11T20:53:15Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Selfish Sparse RNN Training [13.165729746380816]
本稿では,1回のランでパラメータ数を固定したスパースRNNを,性能を損なうことなく訓練する手法を提案する。
我々はPenn TreeBankとWikitext-2の様々なデータセットを用いて最先端のスパーストレーニング結果を得る。
論文 参考訳(メタデータ) (2021-01-22T10:45:40Z) - Training Convolutional Neural Networks With Hebbian Principal Component
Analysis [10.026753669198108]
ヘブリアン学習は、ニューラルネットワークの下層または高層を訓練するために使用することができる。
私たちは、HWTA(Hebbian Winner Takes All)戦略の代わりに、非線形のHebbianプリンシパルコンポーネント分析(HPCA)学習ルールを使用します。
特にHPCAルールは、CIFAR-10イメージデータセットから関連する特徴を抽出するために、畳み込みニューラルネットワークのトレーニングに使用される。
論文 参考訳(メタデータ) (2020-12-22T18:17:46Z) - Training Sparse Neural Networks using Compressed Sensing [13.84396596420605]
本研究では,プレニングとトレーニングを1ステップに組み合わせた圧縮センシングに基づく新しい手法の開発と試験を行う。
具体的には、トレーニング中の重みを適応的に重み付けした$ell1$のペナルティを利用して、スパースニューラルネットワークをトレーニングするために、正規化二重平均化(RDA)アルゴリズムの一般化と組み合わせる。
論文 参考訳(メタデータ) (2020-08-21T19:35:54Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
大規模検索空間を対象とした進化グラフ強化学習(EGRL)を提案する。
我々は、推論のために、Intel NNP-Iチップ上で、我々のアプローチを直接訓練し、検証する。
また,NNP-Iコンパイラと比較して28~78%の高速化を実現している。
論文 参考訳(メタデータ) (2020-07-14T18:50:12Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。