Exoplanet Validation with Machine Learning: 50 new validated Kepler
planets
- URL: http://arxiv.org/abs/2008.10516v1
- Date: Mon, 24 Aug 2020 15:35:21 GMT
- Title: Exoplanet Validation with Machine Learning: 50 new validated Kepler
planets
- Authors: David J. Armstrong, Jevgenij Gamper, Theodoros Damoulas
- Abstract summary: Over 30% of the 4000 known exoplanets to date have been discovered using 'validation'
We demonstrate the use of machine learning algorithms to perform probabilistic planet validation incorporating prior probabilities.
- Score: 13.986963122264633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over 30% of the ~4000 known exoplanets to date have been discovered using
'validation', where the statistical likelihood of a transit arising from a
false positive (FP), non-planetary scenario is calculated. For the large
majority of these validated planets calculations were performed using the vespa
algorithm (Morton et al. 2016). Regardless of the strengths and weaknesses of
vespa, it is highly desirable for the catalogue of known planets not to be
dependent on a single method. We demonstrate the use of machine learning
algorithms, specifically a gaussian process classifier (GPC) reinforced by
other models, to perform probabilistic planet validation incorporating prior
probabilities for possible FP scenarios. The GPC can attain a mean log-loss per
sample of 0.54 when separating confirmed planets from FPs in the Kepler
threshold crossing event (TCE) catalogue. Our models can validate thousands of
unseen candidates in seconds once applicable vetting metrics are calculated,
and can be adapted to work with the active TESS mission, where the large number
of observed targets necessitates the use of automated algorithms. We discuss
the limitations and caveats of this methodology, and after accounting for
possible failure modes newly validate 50 Kepler candidates as planets, sanity
checking the validations by confirming them with vespa using up to date stellar
information. Concerning discrepancies with vespa arise for many other
candidates, which typically resolve in favour of our models. Given such issues,
we caution against using single-method planet validation with either method
until the discrepancies are fully understood.
Related papers
- DBNets: A publicly available deep learning tool to measure the masses of
young planets in dusty protoplanetary discs [49.1574468325115]
We develop DBNets, a tool to quickly infer the mass of allegedly embedded planets from protoplanetary discs.
We extensively tested our tool on out-of-distribution data.
DBNets can identify inputs strongly outside its training scope returning an uncertainty above a specific threshold.
It can be reliably applied only on discs observed with inclinations below approximately 60deg, in the optically thin regime.
arXiv Detail & Related papers (2024-02-19T19:00:09Z) - AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation [64.9230895853942]
Domain generalization can be arbitrarily hard without exploiting target domain information.
Test-time adaptive (TTA) methods are proposed to address this issue.
In this work, we adopt Non-Parametric to perform the test-time Adaptation (AdaNPC)
arXiv Detail & Related papers (2023-04-25T04:23:13Z) - Locating Hidden Exoplanets in ALMA Data Using Machine Learning [10.316742952272394]
We demonstrate that machine learning can quickly and accurately detect the presence of planets.
We train our model on synthetic images generated from simulations and apply it to real observations to identify forming planets in real systems.
arXiv Detail & Related papers (2022-11-17T14:02:16Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
We use positive-P phase-space simulations of grouped count probabilities as a fingerprint for verifying multi-mode data.
We show how one can disprove faked data, and apply this to a classical count algorithm.
arXiv Detail & Related papers (2022-11-07T12:00:45Z) - ExoSGAN and ExoACGAN: Exoplanet Detection using Adversarial Training
Algorithms [0.0]
We use two variations of generative adversarial networks to detect transiting exoplanets in K2 data.
Our techniques are able to categorize the light curves with a recall and precision of 1.00 on the test data.
arXiv Detail & Related papers (2022-07-20T05:45:36Z) - Using Bayesian Deep Learning to infer Planet Mass from Gaps in
Protoplanetary Disks [0.0]
We introduce a deep learning network "DPNNet-Bayesian" that can predict planet mass from disk gaps.
A unique feature of our approach is that it can distinguish between the uncertainty associated with the deep learning architecture and uncertainty inherent in the input data.
The network predicts masses of $ 86.0 pm 5.5 M_Earth $, $ 43.8 pm 3.3 M_Earth $, and $ 92.2 pm 5.1 M_Earth $ respectively.
arXiv Detail & Related papers (2022-02-23T19:00:05Z) - Automation Of Transiting Exoplanet Detection, Identification and
Habitability Assessment Using Machine Learning Approaches [0.0]
We analyze the light intensity curves from stars captured by the Kepler telescope to detect the potential curves that exhibit the characteristics of an existence of a possible planetary system.
We address the automation of exoplanet identification and habitability determination by leveraging several state-of-art machine learning and ensemble approaches.
arXiv Detail & Related papers (2021-12-06T19:00:12Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Meta-Generating Deep Attentive Metric for Few-shot Classification [53.07108067253006]
We present a novel deep metric meta-generation method to generate a specific metric for a new few-shot learning task.
In this study, we structure the metric using a three-layer deep attentive network that is flexible enough to produce a discriminative metric for each task.
We gain surprisingly obvious performance improvement over state-of-the-art competitors, especially in the challenging cases.
arXiv Detail & Related papers (2020-12-03T02:07:43Z) - Exoplanet Detection using Machine Learning [0.0]
We introduce a new machine learning based technique to detect exoplanets using the transit method.
For Kepler data, the method is able to predict a planet with an AUC of 0.948, so that 94.8 per cent of the true planet signals are ranked higher than non-planet signals.
For the Transiting Exoplanet Survey Satellite (TESS) data, we found our method can classify light curves with an accuracy of 0.98, and is able to identify planets with a recall of 0.82 at a precision of 0.63.
arXiv Detail & Related papers (2020-11-28T14:06:39Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.