Accurate Alignment Inspection System for Low-resolution Automotive and
Mobility LiDAR
- URL: http://arxiv.org/abs/2008.10584v1
- Date: Mon, 24 Aug 2020 17:47:59 GMT
- Title: Accurate Alignment Inspection System for Low-resolution Automotive and
Mobility LiDAR
- Authors: Seontake Oh, Ji-Hwan You, Azim Eskandarian, Young-Keun Kim
- Abstract summary: An accurate inspection system is proposed for estimating a LiDAR alignment error after sensor attachment on a mobility system such as a vehicle or robot.
The proposed method uses only a single target board at the fixed position to estimate the three orientations (roll, tilt, and yaw) and the horizontal position of the LiDAR attachment with sub-degree and millimeter level accuracy.
- Score: 125.41260574344933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A misalignment of LiDAR as low as a few degrees could cause a significant
error in obstacle detection and mapping that could cause safety and quality
issues. In this paper, an accurate inspection system is proposed for estimating
a LiDAR alignment error after sensor attachment on a mobility system such as a
vehicle or robot. The proposed method uses only a single target board at the
fixed position to estimate the three orientations (roll, tilt, and yaw) and the
horizontal position of the LiDAR attachment with sub-degree and millimeter
level accuracy. After the proposed preprocessing steps, the feature beam points
that are the closest to each target corner are extracted and used to calculate
the sensor attachment pose with respect to the target board frame using a
nonlinear optimization method and with a low computational cost. The
performance of the proposed method is evaluated using a test bench that can
control the reference yaw and horizontal translation of LiDAR within ranges of
3 degrees and 30 millimeters, respectively. The experimental results for a
low-resolution 16 channel LiDAR (Velodyne VLP-16) confirmed that misalignment
could be estimated with accuracy within 0.2 degrees and 4 mm. The high accuracy
and simplicity of the proposed system make it practical for large-scale
industrial applications such as automobile or robot manufacturing process that
inspects the sensor attachment for the safety quality control.
Related papers
- YOCO: You Only Calibrate Once for Accurate Extrinsic Parameter in LiDAR-Camera Systems [0.5999777817331317]
In a multi-sensor fusion system composed of cameras and LiDAR, precise extrinsic calibration contributes to the system's long-term stability and accurate perception of the environment.
This paper proposes a novel fully automatic extrinsic calibration method for LiDAR-camera systems that circumvents the need for corresponding point registration.
arXiv Detail & Related papers (2024-07-25T13:44:49Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - Automated Automotive Radar Calibration With Intelligent Vehicles [73.15674960230625]
We present an approach for automated and geo-referenced calibration of automotive radar sensors.
Our method does not require external modifications of a vehicle and instead uses the location data obtained from automated vehicles.
Our evaluation on data from a real testing site shows that our method can correctly calibrate infrastructure sensors in an automated manner.
arXiv Detail & Related papers (2023-06-23T07:01:10Z) - Continuous Online Extrinsic Calibration of Fisheye Camera and LiDAR [7.906477322731106]
An accurate extrinsic calibration is required to fuse the camera and LiDAR data into a common spatial reference frame required by high-level perception functions.
There is a need for continuous online extrinsic calibration algorithms which can automatically update the value of the camera-LiDAR calibration during the life of the vehicle using only sensor data.
We propose using mutual information between the camera image's depth estimate, provided by commonly available monocular depth estimation networks, and the LiDAR pointcloud's geometric distance as a optimization metric for extrinsic calibration.
arXiv Detail & Related papers (2023-06-22T23:16:31Z) - End-To-End Optimization of LiDAR Beam Configuration for 3D Object
Detection and Localization [87.56144220508587]
We take a new route to learn to optimize the LiDAR beam configuration for a given application.
We propose a reinforcement learning-based learning-to-optimize framework to automatically optimize the beam configuration.
Our method is especially useful when a low-resolution (low-cost) LiDAR is needed.
arXiv Detail & Related papers (2022-01-11T09:46:31Z) - CRLF: Automatic Calibration and Refinement based on Line Feature for
LiDAR and Camera in Road Scenes [16.201111055979453]
We propose a novel method to calibrate the extrinsic parameter for LiDAR and camera in road scenes.
Our method introduces line features from static straight-line-shaped objects such as road lanes and poles in both image and point cloud.
We conduct extensive experiments on KITTI and our in-house dataset, quantitative and qualitative results demonstrate the robustness and accuracy of our method.
arXiv Detail & Related papers (2021-03-08T06:02:44Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State
LiDAR and Camera Systems [11.787271829250805]
Solid-State LiDAR (SSL) enables low-cost and efficient obtainment of 3D point clouds from the environment.
We propose a fully automatic calibration method for the non-repetitive scanning SSL and camera systems.
We evaluate the proposed method on different types of LiDAR and camera sensor combinations in real conditions.
arXiv Detail & Related papers (2020-11-17T09:11:28Z) - Automatic LiDAR Extrinsic Calibration System using Photodetector and
Planar Board for Large-scale Applications [110.32028864986918]
This study proposes a new concept of a target board with embedded photodetector arrays, named the PD-target system, to find the precise position of the correspondence laser beams on the target surface.
The experimental evaluation of the proposed system on low-resolution LiDAR showed that the LiDAR offset pose can be estimated within 0.1 degree and 3 mm levels of precision.
arXiv Detail & Related papers (2020-08-24T16:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.