Invariant quadratic operators associated with Linear Canonical
Transformations and their eigenstates
- URL: http://arxiv.org/abs/2008.10602v5
- Date: Thu, 20 Jan 2022 18:10:43 GMT
- Title: Invariant quadratic operators associated with Linear Canonical
Transformations and their eigenstates
- Authors: Ravo Tokiniaina Ranaivoson, Raoelina Andriambololona, Hanitriarivo
Rakotoson, Manjakamanana Rivo Herivola Ravelonjato
- Abstract summary: The main purpose of this work is to identify invariant quadratic operators associated with Linear Canonical Transformations (LCTs)
LCTs can be identified with linear transformations which keep invariant the Canonical Commutation Relations ( CCRs)
Two other LCT-invariant quadratic operators, which can be considered as the number operators of some quasipartciles, are also identified.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main purpose of this work is to identify invariant quadratic operators
associated with Linear Canonical Transformations (LCTs) which could play
important roles in physics. LCTs are considered in many fields. In quantum
theory, they can be identified with linear transformations which keep invariant
the Canonical Commutation Relations (CCRs). In this work, LCTs corresponding to
a general pseudo-Euclidian space are considered and related to a phase space
representation of quantum theory. Explicit calculations are firstly performed
for the monodimensional case to identify the corresponding LCT-invariant
quadratic operators then multidimensional generalizations of the obtained
results are deduced. The eigenstates of these operators are also identified. A
first kind of LCT-invariant operator is a second order polynomial of the
coordinates and momenta operators and is a generalization of reduced momentum
dispersion operator. The coefficients of this polynomial depend on the mean
values and the statistical variances-covariances of the coordinates and momenta
operators themselves. It is shown that these statistical variances-covariances
can be related with thermodynamic variables. Two other LCT-invariant quadratic
operators, which can be considered as the number operators of some
quasipartciles, are also identified: the first one is a number operator of
bosonic type quasiparticles and the second one corresponds to fermionic type.
This fermionic LCT-invariant quadratic operator is directly related to a spin
representation of LCTs. It is shown explicitly, in the case of a
pentadimensional theory, that the eigenstates of this operator can be
considered as basic quantum states of elementary fermions. A classification of
the fundamental fermions, compatible with the Standard model of particle
physics, is established from a classification of these states.
Related papers
- Bridging conformal field theory and parton approaches to SU(n)_k chiral spin liquids [48.225436651971805]
We employ the SU(n)_k Wess-Zumino-Witten (WZW) model in conformal field theory to construct lattice wave functions in both one and two dimensions.
In one dimension, these wave functions describe critical spin chains whose universality classes are in one-to-one correspondence with the WZW models used in the construction.
In two dimensions, our constructions yield model wave functions for chiral spin liquids, and we show how to find all topological sectors of them in a systematic way.
arXiv Detail & Related papers (2025-01-16T14:42:00Z) - Quantum Random Walks and Quantum Oscillator in an Infinite-Dimensional Phase Space [45.9982965995401]
We consider quantum random walks in an infinite-dimensional phase space constructed using Weyl representation of the coordinate and momentum operators.
We find conditions for their strong continuity and establish properties of their generators.
arXiv Detail & Related papers (2024-06-15T17:39:32Z) - Covariant operator bases for continuous variables [0.0]
We work out an alternative basis consisting of monomials on the basic observables, with the crucial property of behaving well under symplectic transformations.
Given the density matrix of a state, the expansion coefficients in that basis constitute the multipoles, which describe the state in a canonically covariant form that is both concise and explicit.
arXiv Detail & Related papers (2023-09-18T18:00:15Z) - Supersymmetric Quantum Mechanics of Hypergeometric-like Differential
Operators [0.0]
Systematic iterative algorithms of supersymmetric quantum mechanics (SUSYQM) type for solving the eigenequation of principal hypergeometric-like differential operator (HLDO)
These algorithms provide a simple SUSYQM answer to the question regarding why there exist simultaneously a series of principal as well as associated eigenfunctions for the same HLDO.
Due to their relatively high efficiency, algebraic elementariness and logical independence, the iterative SUSYQM algorithms developed in this paper could become the hopefuls for supplanting some traditional methods for solving the eigenvalue problems of principal HLDOs and their associated cousins.
arXiv Detail & Related papers (2023-07-29T09:59:54Z) - The Schmidt rank for the commuting operator framework [58.720142291102135]
The Schmidt rank is a measure for the entanglement dimension of a pure bipartite state.
We generalize the Schmidt rank to the commuting operator framework.
We analyze bipartite states and compute the Schmidt rank in several examples.
arXiv Detail & Related papers (2023-07-21T14:37:33Z) - Work statistics, quantum signatures and enhanced work extraction in
quadratic fermionic models [62.997667081978825]
In quadratic fermionic models we determine a quantum correction to the work statistics after a sudden and a time-dependent driving.
Such a correction lies in the non-commutativity of the initial quantum state and the time-dependent Hamiltonian.
Thanks to the latter, one can assess the onset of non-classical signatures in the KDQ distribution of work.
arXiv Detail & Related papers (2023-02-27T13:42:40Z) - Order-invariant two-photon quantum correlations in PT-symmetric
interferometers [62.997667081978825]
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents.
We show that the overall multiphoton behavior of a network from its individual building blocks typically defies intuition.
Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways even in small-scale non-Hermitian networks.
arXiv Detail & Related papers (2023-02-23T09:43:49Z) - Optimal Semiclassical Regularity of Projection Operators and Strong Weyl
Law [0.0]
We prove that projection operators converge to characteristic functions of the phase space.
This can be interpreted as a semiclassical on the size of commutators in Schatten norms.
arXiv Detail & Related papers (2023-02-09T18:05:17Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Diagonal unitary and orthogonal symmetries in quantum theory II:
Evolution operators [1.5229257192293197]
We study bipartite unitary operators which stay invariant under the local actions of diagonal unitary and orthogonal groups.
As a first application, we construct large new families of dual unitary gates in arbitrary finite dimensions.
Our scrutiny reveals that these operators can be used to simulate any bipartite unitary gate via local operations and classical communication.
arXiv Detail & Related papers (2021-12-21T11:54:51Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Covariant Quantum Mechanics and Quantum Spacetime [0.0]
The basic representation is identified as a coherent state representation, essentially an irreducible component of the regular representation.
Explicit wavefunction description is given without any restriction of the variable domains, yet with a finite integral inner product.
arXiv Detail & Related papers (2020-02-04T08:55:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.