Diagonal unitary and orthogonal symmetries in quantum theory II:
Evolution operators
- URL: http://arxiv.org/abs/2112.11123v1
- Date: Tue, 21 Dec 2021 11:54:51 GMT
- Title: Diagonal unitary and orthogonal symmetries in quantum theory II:
Evolution operators
- Authors: Satvik Singh and Ion Nechita
- Abstract summary: We study bipartite unitary operators which stay invariant under the local actions of diagonal unitary and orthogonal groups.
As a first application, we construct large new families of dual unitary gates in arbitrary finite dimensions.
Our scrutiny reveals that these operators can be used to simulate any bipartite unitary gate via local operations and classical communication.
- Score: 1.5229257192293197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study bipartite unitary operators which stay invariant under the local
actions of diagonal unitary and orthogonal groups. We investigate structural
properties of these operators, arguing that the diagonal symmetry makes them
suitable for analytical study. As a first application, we construct large new
families of dual unitary gates in arbitrary finite dimensions, which are
important toy models for entanglement spreading in quantum circuits. We then
analyze the non-local nature of these invariant operators, both in discrete
(operator Schmidt rank) and continuous (entangling power) settings. Our
scrutiny reveals that these operators can be used to simulate any bipartite
unitary gate via stochastic local operations and classical communication.
Furthermore, we establish a one-to-one connection between the set of local
diagonal unitary invariant dual unitary operators with maximum entangling power
and the set of complex Hadamard matrices. Finally, we discuss
distinguishability of unitary operators in the setting of the stated diagonal
symmetry.
Related papers
- Quantum cellular automata and categorical duality of spin chains [0.0]
We study categorical dualities, which are bounded-spread isomorphisms between algebras of symmetry-respecting local operators on a spin chain.
A fundamental question about dualities is whether they can be extended to quantum cellular automata.
We present a solution to the extension problem using the machinery of Doplicher-Haag-Roberts bimodules.
arXiv Detail & Related papers (2024-10-11T15:00:50Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Non-Universality from Conserved Superoperators in Unitary Circuits [0.0]
An important result in the theory of quantum control is the "universality" of $2$-local unitary gates.
Recent results have shown that universality can break down in the presence of symmetries.
arXiv Detail & Related papers (2024-09-17T17:59:42Z) - Quantum Random Walks and Quantum Oscillator in an Infinite-Dimensional Phase Space [45.9982965995401]
We consider quantum random walks in an infinite-dimensional phase space constructed using Weyl representation of the coordinate and momentum operators.
We find conditions for their strong continuity and establish properties of their generators.
arXiv Detail & Related papers (2024-06-15T17:39:32Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Construction and local equivalence of dual-unitary operators: from
dynamical maps to quantum combinatorial designs [0.0]
We study the map analytically for the two-qubit case describing the basins of attraction, fixed points, and rates of approach to dual unitaries.
A subset of dual-unitary operators having maximum entangling power are 2-unitary operators or perfect tensors.
A necessary criterion for their local unitary equivalence to distinguish classes is also introduced and used to display various concrete results.
arXiv Detail & Related papers (2022-05-18T10:13:56Z) - Self-adjoint extension schemes and modern applications to quantum
Hamiltonians [55.2480439325792]
monograph contains revised and enlarged materials from previous lecture notes of undergraduate and graduate courses and seminars delivered by both authors over the last years on a subject that is central both in abstract operator theory and in applications to quantum mechanics.
A number of models are discussed, which are receiving today new or renewed interest in mathematical physics, in particular from the point of view of realising certain operators of interests self-adjointly.
arXiv Detail & Related papers (2022-01-25T09:45:16Z) - Dualities in one-dimensional quantum lattice models: symmetric
Hamiltonians and matrix product operator intertwiners [0.0]
We present a systematic recipe for generating and classifying duality transformations in one-dimensional quantum lattice systems.
Our construction emphasizes the role of global symmetries, including those described by (non)-abelian groups.
We illustrate this approach for known dualities such as Kramers-Wannier, Jordan-Wigner, Kennedy-Tasaki and the IRF-vertex correspondence.
arXiv Detail & Related papers (2021-12-16T18:22:49Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Joint measurability meets Birkhoff-von Neumann's theorem [77.34726150561087]
We prove that joint measurability arises as a mathematical feature of DNTs in this context, needed to establish a characterisation similar to Birkhoff-von Neumann's.
We also show that DNTs emerge naturally from a particular instance of a joint measurability problem, remarking its relevance in general operator theory.
arXiv Detail & Related papers (2018-09-19T18:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.