論文の概要: Counterfactual Explanations for Machine Learning on Multivariate Time
Series Data
- arxiv url: http://arxiv.org/abs/2008.10781v1
- Date: Tue, 25 Aug 2020 02:04:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 02:49:20.831094
- Title: Counterfactual Explanations for Machine Learning on Multivariate Time
Series Data
- Title(参考訳): 多変量時系列データを用いた機械学習の反事実的説明
- Authors: Emre Ates, Burak Aksar, Vitus J. Leung, Ayse K. Coskun
- Abstract要約: 本稿では、教師付き機械学習フレームワークに対して、対実的説明を提供するための新しい説明可能性手法を提案する。
提案手法は,信頼性やロバスト性など,いくつかの異なるMLフレームワークやデータセット上での最先端の説明可能性手法よりも優れている。
- 参考スコア(独自算出の注目度): 0.9274371635733836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Applying machine learning (ML) on multivariate time series data has growing
popularity in many application domains, including in computer system
management. For example, recent high performance computing (HPC) research
proposes a variety of ML frameworks that use system telemetry data in the form
of multivariate time series so as to detect performance variations, perform
intelligent scheduling or node allocation, and improve system security. Common
barriers for adoption for these ML frameworks include the lack of user trust
and the difficulty of debugging. These barriers need to be overcome to enable
the widespread adoption of ML frameworks in production systems. To address this
challenge, this paper proposes a novel explainability technique for providing
counterfactual explanations for supervised ML frameworks that use multivariate
time series data. The proposed method outperforms state-of-the-art
explainability methods on several different ML frameworks and data sets in
metrics such as faithfulness and robustness. The paper also demonstrates how
the proposed method can be used to debug ML frameworks and gain a better
understanding of HPC system telemetry data.
- Abstract(参考訳): 多変量時系列データへの機械学習(ML)の適用は、コンピュータシステム管理を含む多くのアプリケーション領域で人気が高まっている。
例えば、最近のハイパフォーマンスコンピューティング(HPC)研究は、多変量時系列の形でシステムテレメトリデータを使用するさまざまなMLフレームワークを提案し、パフォーマンスの変動を検出し、インテリジェントなスケジューリングやノード割り当てを行い、システムのセキュリティを改善している。
これらのMLフレームワークを採用する上で共通の障壁は、ユーザ信頼の欠如とデバッグの難しさである。
これらの障壁は、プロダクションシステムでMLフレームワークを広く採用するために克服する必要がある。
この課題に対処するために,多変量時系列データを用いた教師付きMLフレームワークに対して,対実的説明を提供するための新しい説明可能性手法を提案する。
提案手法は,信頼性やロバスト性など,いくつかの異なるMLフレームワークやデータセット上での最先端の説明可能性手法よりも優れている。
また,提案手法を用いてMLフレームワークをデバッグし,HPCシステムテレメトリデータの理解を深める方法について述べる。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Probabilistic ML Verification via Weighted Model Integration [11.812078181471634]
機械学習モデルの確率形式検証(PFV)はその初期段階にある。
重み付きモデル統合(WMI)に基づくMLシステムのPFV統合フレームワークを提案する。
ML検証文献におけるスケーリング手法が,本来の範囲を超えていかに一般化できるかを示す。
論文 参考訳(メタデータ) (2024-02-07T14:24:04Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
本稿では,既存のMTL手法の効率性に焦点をあてる。
バックボーンを小さくしたメソッドの大規模な実験と,MetaGraspNetデータセットを新しいテストグラウンドとして実施する。
また,MTLにおける課題の新規かつ効率的な識別子として,特徴分散尺度を提案する。
論文 参考訳(メタデータ) (2024-02-05T22:15:55Z) - Enhancing Pattern Classification in Support Vector Machines through
Matrix Formulation [0.0]
既存のSVMベースのモデルにおけるベクトルベースの定式化への依存は、柔軟性と、特定の問題に対処するために追加用語を組み込むことの容易さに関する制限を生じさせる。
我々はこれらの制約を効果的に解決するSVMの行列定式化を導入する。
マルチラベルおよびマルチクラスデータセットの実験的評価は、Matrix SVMがより優れた時間効率を実現することを示す。
論文 参考訳(メタデータ) (2023-07-18T15:56:39Z) - Optimal Event Monitoring through Internet Mashup over Multivariate Time
Series [77.34726150561087]
このフレームワークは、モデル定義、クエリ、パラメータ学習、モデル評価、データ監視、決定レコメンデーション、Webポータルのサービスをサポートする。
さらに、MTSAデータモデルとクエリ言語を拡張して、学習、監視、レコメンデーションのサービスにおいて、この種の問題をサポートする。
論文 参考訳(メタデータ) (2022-10-18T16:56:17Z) - Multiscale Laplacian Learning [3.24029503704305]
本稿では,機械学習タスクに対する2つの革新的なマルチスケールラプラシアン学習手法を提案する。
マルチカーネル多様体学習(MML)と呼ばれる最初のアプローチは、マルチカーネル情報と多様体学習を統合する。
2つ目のアプローチは、MBO (Multiscale MBO) 法と呼ばれ、有名な古典的なメリマン・バーンス=オッシャースキームの修正にマルチスケールのラプラシアンを導入している。
論文 参考訳(メタデータ) (2021-09-08T15:25:32Z) - The Benchmark Lottery [114.43978017484893]
ベンチマーク宝くじ」は、機械学習ベンチマークプロセスの全体的な脆弱さを記述している。
アルゴリズムの相対的性能は、異なるベンチマークタスクを選択するだけで大幅に変化する可能性がある。
論文 参考訳(メタデータ) (2021-07-14T21:08:30Z) - Machine Learning-enhanced Receive Processing for MU-MIMO OFDM Systems [15.423422040627331]
機械学習は、マルチユーザマルチインプットマルチアウトプット(MU-MIMO)受信処理を改善するために使用できる。
本稿では,従来の受信機の利点を保ちつつ,特定の部品をMLコンポーネントで強化する新たな戦略を提案する。
論文 参考訳(メタデータ) (2021-06-30T14:02:27Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。