Simple Unsupervised Similarity-Based Aspect Extraction
- URL: http://arxiv.org/abs/2008.10820v1
- Date: Tue, 25 Aug 2020 04:58:07 GMT
- Title: Simple Unsupervised Similarity-Based Aspect Extraction
- Authors: Danny Suarez Vargas, Lucas R. C. Pessutto, and Viviane Pereira Moreira
- Abstract summary: We propose a simple approach called SUAEx for aspect extraction.
SUAEx is unsupervised and relies solely on the similarity of word embeddings.
Experimental results on datasets from three different domains have shown that SUAEx achieves results that can outperform the state-of-the-art attention-based approach at a fraction of the time.
- Score: 0.9558392439655015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of sentiment analysis, there has been growing interest in
performing a finer granularity analysis focusing on the specific aspects of the
entities being evaluated. This is the goal of Aspect-Based Sentiment Analysis
(ABSA) which basically involves two tasks: aspect extraction and polarity
detection. The first task is responsible for discovering the aspects mentioned
in the review text and the second task assigns a sentiment orientation
(positive, negative, or neutral) to that aspect. Currently, the
state-of-the-art in ABSA consists of the application of deep learning methods
such as recurrent, convolutional and attention neural networks. The limitation
of these techniques is that they require a lot of training data and are
computationally expensive. In this paper, we propose a simple approach called
SUAEx for aspect extraction. SUAEx is unsupervised and relies solely on the
similarity of word embeddings. Experimental results on datasets from three
different domains have shown that SUAEx achieves results that can outperform
the state-of-the-art attention-based approach at a fraction of the time.
Related papers
- A Novel Energy based Model Mechanism for Multi-modal Aspect-Based
Sentiment Analysis [85.77557381023617]
We propose a novel framework called DQPSA for multi-modal sentiment analysis.
PDQ module uses the prompt as both a visual query and a language query to extract prompt-aware visual information.
EPE module models the boundaries pairing of the analysis target from the perspective of an Energy-based Model.
arXiv Detail & Related papers (2023-12-13T12:00:46Z) - OATS: Opinion Aspect Target Sentiment Quadruple Extraction Dataset for
Aspect-Based Sentiment Analysis [55.61047894397937]
Aspect-based sentiment analysis (ABSA) delves into understanding sentiments specific to distinct elements within a user-generated review.
We introduce the OATS dataset, which encompasses three fresh domains and consists of 27,470 sentence-level quadruples and 17,092 review-levels.
Our initiative seeks to bridge specific observed gaps: the recurrent focus on familiar domains like restaurants and laptops, limited data for intricate quadruple extraction tasks, and an occasional oversight of the synergy between sentence and review-level sentiments.
arXiv Detail & Related papers (2023-09-23T07:39:16Z) - Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis [72.9124467710526]
generative approaches have been proposed to extract all four elements as (one or more) quadruplets from text as a single task.
We propose a unified framework for solving ABSA, and the associated sub-tasks to improve the performance in few-shot scenarios.
arXiv Detail & Related papers (2022-10-12T23:38:57Z) - A Simple Information-Based Approach to Unsupervised Domain-Adaptive
Aspect-Based Sentiment Analysis [58.124424775536326]
We propose a simple but effective technique based on mutual information to extract their term.
Experiment results show that our proposed method outperforms the state-of-the-art methods for cross-domain ABSA by 4.32% Micro-F1.
arXiv Detail & Related papers (2022-01-29T10:18:07Z) - Deep Context- and Relation-Aware Learning for Aspect-based Sentiment
Analysis [3.7175198778996483]
We propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information.
DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.
arXiv Detail & Related papers (2021-06-07T17:16:15Z) - A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis [9.587513675287829]
Aspect based sentiment analysis involves three fundamental subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification.
Previous approaches fail to solve all subtasks in a unified end-to-end framework.
We construct two machine reading comprehension problems and solve all subtasks by joint training two BERT-MRC models with parameters sharing.
arXiv Detail & Related papers (2021-01-04T07:47:53Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - A Simple and Effective Self-Supervised Contrastive Learning Framework
for Aspect Detection [15.36713547251997]
We propose a self-supervised contrastive learning framework and an attention-based model equipped with a novel smooth self-attention (SSA) module for the UAD task.
Our methods outperform several recent unsupervised and weakly supervised approaches on publicly available benchmark user review datasets.
arXiv Detail & Related papers (2020-09-18T22:13:49Z) - An Iterative Multi-Knowledge Transfer Network for Aspect-Based Sentiment
Analysis [73.7488524683061]
We propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA.
Our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm.
Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.
arXiv Detail & Related papers (2020-04-04T13:49:54Z) - Toward Tag-free Aspect Based Sentiment Analysis: A Multiple Attention
Network Approach [12.100371588940256]
Multiple-Attention Network (MAN) is capable of extracting both aspect level and overall sentiments from text reviews.
We carry out extensive experiments to demonstrate the strong performance of MAN compared to other state-of-the-art ABSA approaches.
arXiv Detail & Related papers (2020-03-22T20:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.