Optimization with learning-informed differential equation constraints
and its applications
- URL: http://arxiv.org/abs/2008.10893v1
- Date: Tue, 25 Aug 2020 09:05:55 GMT
- Title: Optimization with learning-informed differential equation constraints
and its applications
- Authors: Guozhi Dong, Michael Hintermueller and Kostas Papafitsoros
- Abstract summary: Inspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems are studied.
A particular focus is on the analysis and on numerical methods for problems with machine-learned components.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by applications in optimal control of semilinear elliptic partial
differential equations and physics-integrated imaging, differential equation
constrained optimization problems with constituents that are only accessible
through data-driven techniques are studied. A particular focus is on the
analysis and on numerical methods for problems with machine-learned components.
For a rather general context, an error analysis is provided, and particular
properties resulting from artificial neural network based approximations are
addressed. Moreover, for each of the two inspiring applications analytical
details are presented and numerical results are provided.
Related papers
- Numerical analysis of physics-informed neural networks and related
models in physics-informed machine learning [18.1180892910779]
Physics-informed neural networks (PINNs) have been very popular in recent years as algorithms for the numerical simulation of both forward and inverse problems for partial differential equations.
We provide a unified framework in which analysis of the various components of the error incurred by PINNs in approximating PDEs can be effectively carried out.
arXiv Detail & Related papers (2024-01-30T10:43:27Z) - Comparison of Single- and Multi- Objective Optimization Quality for
Evolutionary Equation Discovery [77.34726150561087]
Evolutionary differential equation discovery proved to be a tool to obtain equations with less a priori assumptions.
The proposed comparison approach is shown on classical model examples -- Burgers equation, wave equation, and Korteweg - de Vries equation.
arXiv Detail & Related papers (2023-06-29T15:37:19Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Physics-informed Neural Network: The Effect of Reparameterization in
Solving Differential Equations [0.0]
Complicated physics mostly involves difficult differential equations, which are hard to solve analytically.
In recent years, physics-informed neural networks have been shown to perform very well in solving systems with various differential equations.
arXiv Detail & Related papers (2023-01-28T07:53:26Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Recurrent Localization Networks applied to the Lippmann-Schwinger
Equation [0.0]
We present a novel machine learning approach for solving equations of the generalized Lippmann-Schwinger (L-S) type.
As part of a learning-based loop unrolling, we use a recurrent convolutional neural network to iteratively solve the governing equations for a field of interest.
We demonstrate our learning approach on the two-phase elastic localization problem, where it achieves excellent accuracy on the predictions of the local (i.e., voxel-level) elastic strains.
arXiv Detail & Related papers (2021-01-29T20:54:17Z) - Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems [3.660098145214465]
We develop an approximation theory for compositional functions and their neural network approximations.
We identify a set of key features of compositional functions and the relationship between the features and the complexity of neural networks.
In addition to function approximations, we prove several formulae of error upper bounds for neural networks.
arXiv Detail & Related papers (2020-12-03T04:40:25Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Numerical Solution of the Parametric Diffusion Equation by Deep Neural
Networks [2.2731658205414025]
We study the machine-learning-based solution of parametric partial differential equations.
We find strong support for the hypothesis that approximation-theoretical effects heavily influence the practical behavior of learning problems in numerical analysis.
arXiv Detail & Related papers (2020-04-25T12:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.