Neuro-Symbolic AI for Analytical Solutions of Differential Equations
- URL: http://arxiv.org/abs/2502.01476v1
- Date: Mon, 03 Feb 2025 16:06:56 GMT
- Title: Neuro-Symbolic AI for Analytical Solutions of Differential Equations
- Authors: Orestis Oikonomou, Levi Lingsch, Dana Grund, Siddhartha Mishra, Georgios Kissas,
- Abstract summary: We present an approach to find analytical solutions of differential equations using a neuro-symbolic AI framework.
This integration unifies numerical and symbolic differential equation solvers via a neuro-symbolic AI framework.
We show advantages over commercial solvers, symbolic methods, and approximate neural networks on a diverse set of problems.
- Score: 11.177091143370466
- License:
- Abstract: Analytical solutions of differential equations offer exact insights into fundamental behaviors of physical processes. Their application, however, is limited as finding these solutions is difficult. To overcome this limitation, we combine two key insights. First, constructing an analytical solution requires a composition of foundational solution components. Second, iterative solvers define parameterized function spaces with constraint-based updates. Our approach merges compositional differential equation solution techniques with iterative refinement by using formal grammars, building a rich space of candidate solutions that are embedded into a low-dimensional (continuous) latent manifold for probabilistic exploration. This integration unifies numerical and symbolic differential equation solvers via a neuro-symbolic AI framework to find analytical solutions of a wide variety of differential equations. By systematically constructing candidate expressions and applying constraint-based refinement, we overcome longstanding barriers to extract such closed-form solutions. We illustrate advantages over commercial solvers, symbolic methods, and approximate neural networks on a diverse set of problems, demonstrating both generality and accuracy.
Related papers
- Closed-form Solutions: A New Perspective on Solving Differential Equations [12.048106653998044]
This paper presents a novel machine learning-based solver, SSDE, which employs reinforcement learning to derive symbolic closed-form solutions for various differential equations.
Our evaluations on a range of ordinary and partial differential equations demonstrate that SSDE provides superior performance in achieving analytical solutions compared to other machine learning approaches.
arXiv Detail & Related papers (2024-05-23T14:29:15Z) - Augmented neural forms with parametric boundary-matching operators for solving ordinary differential equations [0.0]
This paper introduces a formalism for systematically crafting proper neural forms with boundary matches that are amenable to optimization.
It describes a novel technique for converting problems with Neumann or Robin conditions into equivalent problems with parametric Dirichlet conditions.
The proposed augmented neural forms approach was tested on a set of diverse problems, encompassing first- and second-order ordinary differential equations, as well as first-order systems.
arXiv Detail & Related papers (2024-04-30T11:10:34Z) - MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
We develop MultiSTOP, a Reinforcement Learning framework for solving functional equations in physics.
This new methodology produces actual numerical solutions instead of bounds on them.
arXiv Detail & Related papers (2024-04-23T10:51:31Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Symbolically Solving Partial Differential Equations using Deep Learning [5.1964883240501605]
We describe a neural-based method for generating exact or approximate solutions to differential equations.
Unlike other neural methods, our system returns symbolic expressions that can be interpreted directly.
arXiv Detail & Related papers (2020-11-12T22:16:03Z) - Optimization with learning-informed differential equation constraints
and its applications [0.0]
Inspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems are studied.
A particular focus is on the analysis and on numerical methods for problems with machine-learned components.
arXiv Detail & Related papers (2020-08-25T09:05:55Z) - Solving Differential Equations Using Neural Network Solution Bundles [1.2891210250935146]
We propose a neural network be used as a solution bundle, a collection of solutions to an ODE for various initial states and system parameters.
The solution bundle exhibits fast, parallelizable evaluation of the system state, facilitating the use of Bayesian inference for parameter estimation.
arXiv Detail & Related papers (2020-06-17T02:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.