Peer-to-Peer Learning Dynamics of Wide Neural Networks
- URL: http://arxiv.org/abs/2409.15267v1
- Date: Mon, 23 Sep 2024 17:57:58 GMT
- Title: Peer-to-Peer Learning Dynamics of Wide Neural Networks
- Authors: Shreyas Chaudhari, Srinivasa Pranav, Emile Anand, José M. F. Moura,
- Abstract summary: We provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popularDGD algorithms.
We validate our analytical results by accurately predicting error and error and for classification tasks.
- Score: 10.179711440042123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Peer-to-peer learning is an increasingly popular framework that enables beyond-5G distributed edge devices to collaboratively train deep neural networks in a privacy-preserving manner without the aid of a central server. Neural network training algorithms for emerging environments, e.g., smart cities, have many design considerations that are difficult to tune in deployment settings -- such as neural network architectures and hyperparameters. This presents a critical need for characterizing the training dynamics of distributed optimization algorithms used to train highly nonconvex neural networks in peer-to-peer learning environments. In this work, we provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popular distributed gradient descent (DGD) algorithms. Our results leverage both recent advancements in neural tangent kernel (NTK) theory and extensive previous work on distributed learning and consensus. We validate our analytical results by accurately predicting the parameter and error dynamics of wide neural networks trained for classification tasks.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Enhanced quantum state preparation via stochastic prediction of neural
network [0.8287206589886881]
In this paper, we explore an intriguing avenue for enhancing algorithm effectiveness through exploiting the knowledge blindness of neural network.
Our approach centers around a machine learning algorithm utilized for preparing arbitrary quantum states in a semiconductor double quantum dot system.
By leveraging prediction generated by the neural network, we are able to guide the optimization process to escape local optima.
arXiv Detail & Related papers (2023-07-27T09:11:53Z) - Neural Network Pruning as Spectrum Preserving Process [7.386663473785839]
We identify the close connection between matrix spectrum learning and neural network training for dense and convolutional layers.
We propose a matrix sparsification algorithm tailored for neural network pruning that yields better pruning result.
arXiv Detail & Related papers (2023-07-18T05:39:32Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
We study neural networks, a main type of neural network in use.
We prove that as the width of an optimized neural network tends to infinity, its predictive variance on the training set decreases to zero.
arXiv Detail & Related papers (2022-01-30T04:52:31Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
Complex Network Theory (CNT) represents Deep Neural Networks (DNNs) as directed weighted graphs to study them as dynamical systems.
We introduce metrics for nodes/neurons and layers, namely Nodes Strength and Layers Fluctuation.
Our framework distills trends in the learning dynamics and separates low from high accurate networks.
arXiv Detail & Related papers (2021-10-06T10:03:32Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
In certain infinitely-wide neural networks, the neural tangent kernel (NTK) theory fully characterizes generalization.
We show that the linear approximations can indeed rank the learning complexity of certain tasks for neural networks.
Our work provides concrete examples of novel deep learning phenomena which can inspire future theoretical research.
arXiv Detail & Related papers (2021-06-12T13:05:11Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
We introduce Gradient Markov Descent (SMGD), a discrete optimization method applicable to training quantized neural networks.
We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.
arXiv Detail & Related papers (2020-08-25T15:48:15Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
We propose a hybrid method that uses both backpropagation and evolutionary strategies to train Convolutional Neural Networks.
We show that the proposed hybrid method is capable of improving upon regular training in the task of image classification.
arXiv Detail & Related papers (2020-04-15T17:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.