論文の概要: Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA
- arxiv url: http://arxiv.org/abs/2008.11421v1
- Date: Wed, 26 Aug 2020 07:24:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 22:23:16.002415
- Title: Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA
- Title(参考訳): KARMAによるメモリ容量を超える分散ディープラーニングワークロードのスケールアップ
- Authors: Mohamed Wahib, Haoyu Zhang, Truong Thao Nguyen, Aleksandr Drozd, Jens
Domke, Lingqi Zhang, Ryousei Takano, Satoshi Matsuoka
- Abstract要約: 冗長な再計算とアウト・オブ・コアの手法を組み合わせた戦略を提案する。
最先端のアウト・オブ・コア手法を用いて,6種類のモデルで平均1.22倍の高速化を実現した。
我々のデータ並列化ソリューションは,Megatron-LMやTurning-NLGといった大規模モデルのトレーニングにおいて,複雑なハイブリッドモデル並列性よりも優れる。
- 参考スコア(独自算出の注目度): 58.040931661693925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dedicated memory of hardware accelerators can be insufficient to store
all weights and/or intermediate states of large deep learning models. Although
model parallelism is a viable approach to reduce the memory pressure issue,
significant modification of the source code and considerations for algorithms
are required. An alternative solution is to use out-of-core methods instead of,
or in addition to, data parallelism. We propose a performance model based on
the concurrency analysis of out-of-core training behavior, and derive a
strategy that combines layer swapping and redundant recomputing. We achieve an
average of 1.52x speedup in six different models over the state-of-the-art
out-of-core methods. We also introduce the first method to solve the
challenging problem of out-of-core multi-node training by carefully pipelining
gradient exchanges and performing the parameter updates on the host. Our data
parallel out-of-core solution can outperform complex hybrid model parallelism
in training large models, e.g. Megatron-LM and Turning-NLG.
- Abstract(参考訳): ハードウェアアクセラレーターの専用メモリは、大きなディープラーニングモデルのすべての重みや中間状態を格納するには不十分である。
モデル並列性はメモリ圧力問題を軽減するための有効なアプローチであるが、ソースコードの大幅な修正とアルゴリズムの考慮が必要である。
代替の解決策は、データ並列性の代わりに、またはそれに加えて、外部メソッドを使用することである。
本稿では,コア外トレーニング動作の並列解析に基づく性能モデルを提案し,レイヤスワッピングと冗長再計算を組み合わせた戦略を導出する。
最先端のアウト・オブ・コア手法を用いて,6種類のモデルで平均1.22倍の高速化を実現した。
また、勾配交換を慎重にパイプライン化し、ホスト上でパラメータ更新を行うことで、コア外マルチノードトレーニングの課題を解決する最初の方法を提案する。
我々のデータ並列化ソリューションは,Megatron-LMやTurning-NLGといった大規模モデルのトレーニングにおいて,複雑なハイブリッドモデル並列性よりも優れる。
関連論文リスト
- ATOM: Asynchronous Training of Massive Models for Deep Learning in a Decentralized Environment [7.916080032572087]
Atomは、分散化された環境で巨大なモデルの非同期トレーニング用に設計された、レジリエントな分散トレーニングフレームワークである。
atomは、スワップをシームレスにモデルし、トレーニングスループットを最適化するために複数のコピーを同時にトレーニングすることで、1つのホスト(ピア)に完全なLLMを適合させることを目的としている。
異なるGPT-3モデル構成を用いて実験したところ、最適ネットワーク接続のシナリオでは、原子は最先端の分散パイプライン並列化アプローチを組み込んだ場合、トレーニング効率を最大20倍に向上させることができることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:43:43Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
本研究ではまず,ネットワークの計算冗長性について検討する。
次に、モデルの冗長性ブロックをプルークし、ネットワーク性能を維持する。
第3に,計算集約型注意部を高速化するグローバル地域対話型注意(GRI)を提案する。
論文 参考訳(メタデータ) (2023-12-24T15:37:47Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
ディープラーニングアプリケーションは、数十億のパラメータを持つ大きなモデルを使用することの恩恵を受ける。
これらのモデルのトレーニングは、特殊なHPCクラスタを必要とするため、非常に高価である。
安価な"プリエンプティブル"インスタンスを使用するか、あるいは複数のリージョンから既存のリソースをプールする。
論文 参考訳(メタデータ) (2023-01-27T18:55:19Z) - Does compressing activations help model parallel training? [64.59298055364336]
モデル並列性に対する圧縮法の有効性に関する実験的検討を行った。
圧縮アルゴリズムの3つの共通クラスを実装し,評価する。
我々は160以上の設定と8つの一般的なデータセットでこれらの手法を評価した。
論文 参考訳(メタデータ) (2023-01-06T18:58:09Z) - SplitBrain: Hybrid Data and Model Parallel Deep Learning [11.63431725146897]
本稿では,ハイブリッドデータとモデル並列性をサポートする高性能分散ディープラーニングフレームワークSplitBrainを提案する。
具体的には、SplitBrainは、メモリ要求層をシャーディングしながら、計算集約的な畳み込み層を同時に配置する、層固有のパーティショニングを提供する。
その結果,データとモデル並列VGGをCIFAR-10上で最大67%のメモリ消費を節約しながら,ほぼ線形スピードアップを実現することができた。
論文 参考訳(メタデータ) (2021-12-31T06:25:38Z) - Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel
Training [23.633810934134065]
Colossal-AIは、大規模モデルで最大2.76回のトレーニングスピードアップを達成することができる。
システムは、データ、パイプライン、テンソル、シーケンス並列化などの並列トレーニングメソッドをサポートする。
論文 参考訳(メタデータ) (2021-10-28T04:45:55Z) - Deep Generative Models that Solve PDEs: Distributed Computing for
Training Large Data-Free Models [25.33147292369218]
科学機械学習(SciML)の最近の進歩は、複雑な偏微分方程式(PDE)を解く新しいニューラルネットワークアーキテクチャを訓練する可能性を開く。
本稿では、これらの大規模SciMLモデルをトレーニングする2つの課題を解決するために、データ並列分散ディープラーニングのためのソフトウェアフレームワークについて報告する。
私たちのフレームワークは、(a)プロセス数に依存しない損失整合性、(b)同期バッチ正規化、(c)分散高階最適化方法など、いくつかのアウトオブボックス機能を提供します。
論文 参考訳(メタデータ) (2020-07-24T22:42:35Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。