論文の概要: SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient
- arxiv url: http://arxiv.org/abs/2301.11913v2
- Date: Thu, 29 Jun 2023 17:11:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 19:28:24.179469
- Title: SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient
- Title(参考訳): SWARM並列性:大規模モデルのトレーニングは驚くほどコミュニケーション効率が良い
- Authors: Max Ryabinin, Tim Dettmers, Michael Diskin, Alexander Borzunov
- Abstract要約: ディープラーニングアプリケーションは、数十億のパラメータを持つ大きなモデルを使用することの恩恵を受ける。
これらのモデルのトレーニングは、特殊なHPCクラスタを必要とするため、非常に高価である。
安価な"プリエンプティブル"インスタンスを使用するか、あるいは複数のリージョンから既存のリソースをプールする。
- 参考スコア(独自算出の注目度): 69.61083127540776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many deep learning applications benefit from using large models with billions
of parameters. Training these models is notoriously expensive due to the need
for specialized HPC clusters. In this work, we consider alternative setups for
training large models: using cheap "preemptible" instances or pooling existing
resources from multiple regions. We analyze the performance of existing
model-parallel algorithms in these conditions and find configurations where
training larger models becomes less communication-intensive. Based on these
findings, we propose SWARM parallelism, a model-parallel training algorithm
designed for poorly connected, heterogeneous and unreliable devices. SWARM
creates temporary randomized pipelines between nodes that are rebalanced in
case of failure. We empirically validate our findings and compare SWARM
parallelism with existing large-scale training approaches. Finally, we combine
our insights with compression strategies to train a large Transformer language
model with 1B shared parameters (approximately 13B before sharing) on
preemptible T4 GPUs with less than 200Mb/s network.
- Abstract(参考訳): 多くのディープラーニングアプリケーションは、数十億のパラメータを持つ大きなモデルを使用することの恩恵を受ける。
これらのモデルのトレーニングは、特殊なHPCクラスタを必要とするため、非常に高価である。
本研究では、安価な"プリエンプティブル"インスタンスを使用したり、複数のリージョンから既存のリソースをプールするという、大規模なモデルをトレーニングするための代替設定を検討する。
これらの条件下で既存のモデル並列アルゴリズムの性能を解析し、より大きなモデルのトレーニングが通信集約化の少ない構成を見つける。
これらの結果に基づき、不連結で不均一で信頼性の低いデバイスを対象としたモデル並列学習アルゴリズムSWARM並列性を提案する。
SWARMは、障害時に再バランスするノード間で一時的なランダム化パイプラインを生成する。
本研究の成果を実証的に検証し,既存の大規模トレーニング手法と比較した。
最後に,200Mb/s未満のプリエンプティブルなT4 GPU上で1Bの共有パラメータ(約13Bの共有前)で大きなTransformer言語モデルをトレーニングするための圧縮戦略を組み合わせる。
関連論文リスト
- Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPUメモリの制約は、そのような巨大なモデルをトレーニングする上で、注目すべきボトルネックになっている。
この研究は、モデルをGPU間で分割し、個々のセグメントをトレーニングするために合成中間ラベルを生成することを提唱する。
このアプローチは、モデル精度を維持しながらデータ通信を最小限に抑える、より効率的なトレーニングプロセスをもたらす。
論文 参考訳(メタデータ) (2024-03-17T13:06:29Z) - ATOM: Asynchronous Training of Massive Models for Deep Learning in a Decentralized Environment [7.916080032572087]
Atomは、分散化された環境で巨大なモデルの非同期トレーニング用に設計された、レジリエントな分散トレーニングフレームワークである。
atomは、スワップをシームレスにモデルし、トレーニングスループットを最適化するために複数のコピーを同時にトレーニングすることで、1つのホスト(ピア)に完全なLLMを適合させることを目的としている。
異なるGPT-3モデル構成を用いて実験したところ、最適ネットワーク接続のシナリオでは、原子は最先端の分散パイプライン並列化アプローチを組み込んだ場合、トレーニング効率を最大20倍に向上させることができることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:43:43Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Does compressing activations help model parallel training? [64.59298055364336]
モデル並列性に対する圧縮法の有効性に関する実験的検討を行った。
圧縮アルゴリズムの3つの共通クラスを実装し,評価する。
我々は160以上の設定と8つの一般的なデータセットでこれらの手法を評価した。
論文 参考訳(メタデータ) (2023-01-06T18:58:09Z) - Decentralized Training of Foundation Models in Heterogeneous
Environments [77.47261769795992]
GPT-3 や PaLM のようなトレーニング基盤モデルは、非常に高価である。
ヘテロジニアスネットワーク上での分散型システムにおけるモデル並列化を用いた大規模基盤モデルのトレーニングに関する最初の研究について述べる。
論文 参考訳(メタデータ) (2022-06-02T20:19:51Z) - Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel
Training [23.633810934134065]
Colossal-AIは、大規模モデルで最大2.76回のトレーニングスピードアップを達成することができる。
システムは、データ、パイプライン、テンソル、シーケンス並列化などの並列トレーニングメソッドをサポートする。
論文 参考訳(メタデータ) (2021-10-28T04:45:55Z) - TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale
Language Models [60.23234205219347]
TeraPipeは、Transformerベースの言語モデルの同期モデル並列トレーニングのための高性能トークンレベルのパイプライン並列アルゴリズムです。
TeraPipeは、AWSクラスタ上で1750億のパラメータを持つ最大のGPT-3モデルのトレーニングを5.0倍高速化できることを示す。
論文 参考訳(メタデータ) (2021-02-16T07:34:32Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
冗長な再計算とアウト・オブ・コアの手法を組み合わせた戦略を提案する。
最先端のアウト・オブ・コア手法を用いて,6種類のモデルで平均1.22倍の高速化を実現した。
我々のデータ並列化ソリューションは,Megatron-LMやTurning-NLGといった大規模モデルのトレーニングにおいて,複雑なハイブリッドモデル並列性よりも優れる。
論文 参考訳(メタデータ) (2020-08-26T07:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。