Entanglement transitions as a probe of quasiparticles and quantum
thermalization
- URL: http://arxiv.org/abs/2008.11727v2
- Date: Thu, 3 Sep 2020 13:42:20 GMT
- Title: Entanglement transitions as a probe of quasiparticles and quantum
thermalization
- Authors: Tsung-Cheng Lu, Tarun Grover
- Abstract summary: Given a pure state on a tripartite system $ABC$, we study the scaling of entanglement negativity between $A$ and $B$.
For representative states of self-thermalizing systems, either eigenstates or states obtained by a long-time evolution of product states, negativity shows a sharp transition from an area-law scaling to a volume-law scaling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a diagnostic for quantum thermalization based on mixed-state
entanglement. Specifically, given a pure state on a tripartite system $ABC$, we
study the scaling of entanglement negativity between $A$ and $B$. For
representative states of self-thermalizing systems, either eigenstates or
states obtained by a long-time evolution of product states, negativity shows a
sharp transition from an area-law scaling to a volume-law scaling when the
subsystem volume fraction is tuned across a finite critical value. In contrast,
for a system with quasiparticles, it exhibits a volume-law scaling irrespective
of the subsystem fraction. For many-body localized systems, the same quantity
shows an area-law scaling for eigenstates, and volume-law scaling for long-time
evolved product states, irrespective of the subsystem fraction. We provide a
combination of numerical observations and analytical arguments in support of
our conjecture. Along the way, we prove and utilize a `continuity bound' for
negativity: we bound the difference in negativity for two density matrices in
terms of the Hilbert-Schmidt norm of their difference.
Related papers
- Localization transitions in quadratic systems without quantum chaos [0.0]
We study the one-dimensional Anderson and Wannier-Stark models that exhibit eigenstate transitions from localization in quasimomentum space to localization in position space.
We show that the transition point may exhibit an unconventional character of Janus type, i.e., some measures hint at the RMT-like universality emerging at the transition point, while others depart from it.
Our results hint at rich diversity of volume-law eigenstate entanglement entropies in quadratic systems that are not maximally entangled.
arXiv Detail & Related papers (2024-10-07T14:29:32Z) - Entanglement negativity between separated regions in quantum critical systems [0.0]
We study the entanglement between disjoint subregions in quantum critical systems through the lens of the logarithmic negativity.
At small separations, the logarithmic negativity is big and displays universal behavior, but we show non-perturbatively that it decays faster than any power at large separations.
The corresponding absence of distillable entanglement at large separations generalizes the 1d result, and indicates that quantum critical groundstates do not possess long-range bipartite entanglement, at least for bosons.
arXiv Detail & Related papers (2023-10-23T18:20:29Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Anyonic Partial Transpose I: Quantum Information Aspects [0.0]
A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose.
The corresponding entanglement measure is called the logarithmic negativity.
We conjecture that the subspace of states with a vanishing logarithmic negativity is a set of measure zero in the entire space of anyonic states.
arXiv Detail & Related papers (2020-12-03T19:26:35Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Entanglement negativity spectrum of random mixed states: A diagrammatic
approach [0.34410212782758054]
entanglement properties of random pure states are relevant to a variety of problems ranging from chaotic quantum dynamics to black hole physics.
In this paper, we generalize this setup to random mixed states by coupling the system to a bath and use the partial transpose to study their entanglement properties.
arXiv Detail & Related papers (2020-11-02T19:49:37Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.