論文の概要: Domain-Adversarial Learning for Multi-Centre, Multi-Vendor, and
Multi-Disease Cardiac MR Image Segmentation
- arxiv url: http://arxiv.org/abs/2008.11776v1
- Date: Wed, 26 Aug 2020 19:40:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 22:15:27.144257
- Title: Domain-Adversarial Learning for Multi-Centre, Multi-Vendor, and
Multi-Disease Cardiac MR Image Segmentation
- Title(参考訳): マルチセンタ、マルチベンダ、マルチダイザス心筋mr画像セグメンテーションのためのドメイン・アドバーサル・ラーニング
- Authors: Cian M. Scannell and Amedeo Chiribiri and Mitko Veta
- Abstract要約: ドメイン逆学習は、ラベル付きおよび非ラベル付きデータを使用して、ドメイン不変の2D U-Netをトレーニングするために使用される。
このアプローチは、M&Msチャレンジデータセットから、目に見えない領域と見えない領域の両方で評価される。
- 参考スコア(独自算出の注目度): 3.4551186283197883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cine cardiac magnetic resonance (CMR) has become the gold standard for the
non-invasive evaluation of cardiac function. In particular, it allows the
accurate quantification of functional parameters including the chamber volumes
and ejection fraction. Deep learning has shown the potential to automate the
requisite cardiac structure segmentation. However, the lack of robustness of
deep learning models has hindered their widespread clinical adoption. Due to
differences in the data characteristics, neural networks trained on data from a
specific scanner are not guaranteed to generalise well to data acquired at a
different centre or with a different scanner. In this work, we propose a
principled solution to the problem of this domain shift. Domain-adversarial
learning is used to train a domain-invariant 2D U-Net using labelled and
unlabelled data. This approach is evaluated on both seen and unseen domains
from the M\&Ms challenge dataset and the domain-adversarial approach shows
improved performance as compared to standard training. Additionally, we show
that the domain information cannot be recovered from the learned features.
- Abstract(参考訳): 心臓機能評価の非侵襲的基準として, 心臓磁気共鳴(CMR)が注目されている。
特に、チャンバー体積や射出率を含む関数パラメータの正確な定量化を可能にする。
深層学習は、必要な心構造セグメンテーションを自動化する可能性を示している。
しかし、ディープラーニングモデルの堅牢性の欠如は、その広範な臨床導入を妨げる。
データ特性の相違により、特定のスキャナからのデータに基づいてトレーニングされたニューラルネットワークは、別のセンタや別のスキャナで取得したデータに対して十分な一般化が保証されない。
本研究では,この領域シフト問題に対する原則的解を提案する。
ドメイン逆学習は、ラベル付きおよび非ラベル付きデータを使用して、ドメイン不変の2D U-Netをトレーニングするために使用される。
このアプローチは、m\&msチャレンジデータセットから見たドメインと見えないドメインの両方で評価され、ドメイン-敵のアプローチは、標準のトレーニングと比べてパフォーマンスが向上していることを示している。
さらに,学習した特徴からドメイン情報を復元することはできないことを示す。
関連論文リスト
- Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical
Image Segmentation [18.830738606514736]
本研究は、堅牢な医用画像分割のためのカリキュラムベースの拡張フーリエドメイン適応(Curri-AFDA)を提案する。
特に、カリキュラム学習戦略は、異なるレベルのデータシフトの下でのモデルの因果関係に基づいている。
複数のサイトやスキャナーから収集した網膜と核の2つのセグメンテーションタスクの実験から,提案手法が優れた適応と一般化性能をもたらすことが示唆された。
論文 参考訳(メタデータ) (2023-06-06T08:56:58Z) - DA-VSR: Domain Adaptable Volumetric Super-Resolution For Medical Images [69.63915773870758]
本稿では,ドメイン不整合ギャップを補うために,DA-VSR(Domain Adaptable Super- resolution)と呼ばれる新しいアルゴリズムを提案する。
DA-VSRは、統合された特徴抽出バックボーンと一連のネットワークヘッドを使用して、異なる平面上での画像品質を改善する。
DA-VSRは、異なる領域の多くのデータセットにおいて、超解像品質を著しく向上することを示した。
論文 参考訳(メタデータ) (2022-10-11T03:16:35Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Segmentation with Multiple Acceptable Annotations: A Case Study of
Myocardial Segmentation in Contrast Echocardiography [12.594060034146125]
我々は,複数の受理基底真理が利用できる場合にセグメント化性能を評価するために,新たな拡張Diceを提案する。
次に、ニューラルネットが心筋の一般的な特徴を学習できるように、新たな指標を損失関数にさらに組み込むことで、第2の問題を解決する。
臨床MCEデータセットの実験結果から,提案した損失関数を用いてトレーニングしたニューラルネットワークは,既存のニューラルネットワークよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-29T17:32:24Z) - Embracing the Disharmony in Heterogeneous Medical Data [12.739380441313022]
医療画像データの不均一性は、しばしば機械学習の文脈でドメイン不変性を用いて取り組まれる。
本論文は異種性を受け入れ,マルチタスク学習問題として扱う。
提案手法は,主分類タスクにおけるデータセット間の分類精度を5~30%向上することを示す。
論文 参考訳(メタデータ) (2021-03-23T21:36:39Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Studying Robustness of Semantic Segmentation under Domain Shift in
cardiac MRI [0.8858288982748155]
複数の臨床センターやスキャナーベンダーからの画像間でのドメイン転送の課題と機会について検討する。
本研究では、nnU-netフレームワークによって構成された固定されたU-Netアーキテクチャに基づいて、様々なデータ拡張手法とバッチ正規化層について検討する。
論文 参考訳(メタデータ) (2020-11-15T17:50:23Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Unsupervised Domain Adaptation via CycleGAN for White Matter
Hyperintensity Segmentation in Multicenter MR Images [2.627822659948232]
磁気共鳴画像における白色物質の過強度の定量化は、脳卒中、認知症、死亡のリスクを予測する指標となる。
過去数年間、バイオメディカルなイメージセグメンテーションに適した畳み込みニューラルネットワーク(CNN)は、このタスクにおけるこれまでのすべての技術より優れている。
本研究では,脳病変を有するマルチセンターMR画像に対して,非教師なし領域適応を行うために,CycleGAN (CycleGAN) を用いた方法について検討する。
論文 参考訳(メタデータ) (2020-09-10T16:48:19Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。