論文の概要: NASirt: AutoML based learning with instance-level complexity information
- arxiv url: http://arxiv.org/abs/2008.11846v2
- Date: Thu, 3 Dec 2020 18:17:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 21:01:01.853587
- Title: NASirt: AutoML based learning with instance-level complexity information
- Title(参考訳): NASirt: インスタンスレベルの複雑性情報を用いたオートMLベースの学習
- Authors: Habib Asseiss Neto and Ronnie C. O. Alves and Sergio V. A. Campos
- Abstract要約: 我々は、スペクトルデータセットの高精度CNNアーキテクチャを見つけるAutoML手法であるNASirtを提案する。
我々の手法は、ほとんどの場合、ベンチマークよりも優れた性能を示し、平均精度は97.40%に達する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing adequate and precise neural architectures is a challenging task,
often done by highly specialized personnel. AutoML is a machine learning field
that aims to generate good performing models in an automated way. Spectral data
such as those obtained from biological analysis have generally a lot of
important information, and these data are specifically well suited to
Convolutional Neural Networks (CNN) due to their image-like shape. In this work
we present NASirt, an AutoML methodology based on Neural Architecture Search
(NAS) that finds high accuracy CNN architectures for spectral datasets. The
proposed methodology relies on the Item Response Theory (IRT) for obtaining
characteristics from an instance level, such as discrimination and difficulty,
and it is able to define a rank of top performing submodels. Several
experiments are performed in order to demonstrate the methodology's performance
with different spectral datasets. Accuracy results are compared to other
benchmarks methods, such as a high performing, manually crafted CNN and the
Auto-Keras AutoML tool. The results show that our method performs, in most
cases, better than the benchmarks, achieving average accuracy as high as
97.40%.
- Abstract(参考訳): 適切な正確なニューラルネットワークの設計は難しい作業であり、高度に専門的な人材によって行われることが多い。
AutoMLは機械学習の分野であり、優れたモデルを自動で生成することを目指している。
生物学的分析から得られたスペクトルデータは一般に多くの重要な情報であり、これらのデータは画像のような形状のために畳み込みニューラルネットワーク(CNN)に特に適している。
本研究では,NAS(Neural Architecture Search)に基づくAutoML方法論であるNASirtを提案する。
提案手法は,識別や難易度といったインスタンスレベルから特性を得るための項目応答理論(irt)に依存しており,上位実行サブモデルのランクを定義することができる。
スペクトルデータセットの異なる手法の性能を示すために、いくつかの実験が行われた。
精度は、高性能で手作業によるCNNやAuto-Keras AutoMLツールなど、他のベンチマーク手法と比較される。
その結果,本手法はベンチマークよりも精度が良く,平均精度は97.40%であることがわかった。
関連論文リスト
- An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
自閉症スペクトラム障害(Autistic Spectrum disorder、ASD)は、社会的相互作用、コミュニケーション、反復活動の困難を特徴とする神経疾患である。
本研究は,診断プロセスの強化と自動化を目的として,多様な機械学習手法を用いて重要なASD特性を同定する。
論文 参考訳(メタデータ) (2023-09-20T21:23:37Z) - AutoTransfer: AutoML with Knowledge Transfer -- An Application to Graph
Neural Networks [75.11008617118908]
AutoML技術は、各タスクをスクラッチから独立して考慮し、高い計算コストをもたらす。
本稿では,従来の設計知識を新たな関心事に伝達することで,検索効率を向上させるAutoTransferを提案する。
論文 参考訳(メタデータ) (2023-03-14T07:23:16Z) - Systematic Evaluation of Deep Learning Models for Log-based Failure Prediction [3.3810628880631226]
本稿では,障害予測のためのログデータ埋め込み戦略とディープラーニング(DL)タイプの組み合わせを系統的に検討する。
そこで我々は,組込み戦略とDLベースのエンコーダの様々な構成に対応するモジュールアーキテクチャを提案する。
また,F1スコア測定値を用いて,Logkey2vecを用いたCNNベースのエンコーダが最適であることを示す。
論文 参考訳(メタデータ) (2023-03-13T16:04:14Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
不均衡学習はデータマイニングにおいて基本的な課題であり、各クラスにトレーニングサンプルの不均等な比率が存在する。
オーバーサンプリングは、少数民族のための合成サンプルを生成することによって、不均衡な学習に取り組む効果的な手法である。
我々は,異なるレベルの意思決定を共同で最適化できる自動オーバーサンプリングアルゴリズムであるAutoSMOTEを提案する。
論文 参考訳(メタデータ) (2022-08-26T04:28:01Z) - Concurrent Neural Tree and Data Preprocessing AutoML for Image
Classification [0.5735035463793008]
現在のSOTA (State-of-the-art) には、アルゴリズム検索空間の一部として入力データを操作するための従来の手法は含まれていない。
進化的多目的アルゴリズム設計エンジン(EMADE, Evolutionary Multi-objective Algorithm Design Engine)は、従来の機械学習手法のための多目的進化的検索フレームワークである。
CIFAR-10画像分類ベンチマークデータセットにおいて,これらの手法を検索空間の一部として含めることで,性能向上の可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-25T20:03:09Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - A Deep Learning Based Ternary Task Classification System Using Gramian
Angular Summation Field in fNIRS Neuroimaging Data [0.15229257192293197]
機能近赤外分光法(FNIRS)は、血流パターンを研究するために用いられる非侵襲的、経済的手法である。
提案手法は,生のfNIRS時系列データをGramian Angular Summation Fieldを用いた画像に変換する。
深層畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)ベースのアーキテクチャは、メンタル算術、運動画像、アイドル状態などのタスク分類に使用される。
論文 参考訳(メタデータ) (2021-01-14T22:09:35Z) - AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with
Autotuned Data-Parallel Training for Tabular Data [11.552769149674544]
大規模データセットに対する高性能な予測モデルの開発は難しい課題である。
最近の自動機械学習(AutoML)は、予測モデル開発を自動化するための有望なアプローチとして現れている。
我々は,老化進化(AgE)とニューラルアーキテクチャ空間を探索する並列NAS法を組み合わせたAgEBO-Tabularを開発した。
論文 参考訳(メタデータ) (2020-10-30T16:28:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。