Evolution of Convolutional Neural Network (CNN): Compute vs Memory
bandwidth for Edge AI
- URL: http://arxiv.org/abs/2311.12816v1
- Date: Sun, 24 Sep 2023 09:11:22 GMT
- Title: Evolution of Convolutional Neural Network (CNN): Compute vs Memory
bandwidth for Edge AI
- Authors: Dwith Chenna
- Abstract summary: This article explores the relationship between CNN compute requirements and memory bandwidth in the context of Edge AI.
We examine the impact of increasing model complexity on both computational requirements and memory access patterns.
This analysis provides insights into designing efficient architectures and potential hardware accelerators in enhancing CNN performance on edge devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have greatly influenced the field of
Embedded Vision and Edge Artificial Intelligence (AI), enabling powerful
machine learning capabilities on resource-constrained devices. This article
explores the relationship between CNN compute requirements and memory bandwidth
in the context of Edge AI. We delve into the historical progression of CNN
architectures, from the early pioneering models to the current state-of-the-art
designs, highlighting the advancements in compute-intensive operations. We
examine the impact of increasing model complexity on both computational
requirements and memory access patterns. The paper presents a comparison
analysis of the evolving trade-off between compute demands and memory bandwidth
requirements in CNNs. This analysis provides insights into designing efficient
architectures and potential hardware accelerators in enhancing CNN performance
on edge devices.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
We propose a novel semantic compression method, autoencoder-based CNN architecture (AECNN) for effective semantic extraction and compression in partial offloading.
In the semantic encoder, we introduce a feature compression module based on the channel attention mechanism in CNNs, to compress intermediate data by selecting the most informative features.
In the semantic decoder, we design a lightweight decoder to reconstruct the intermediate data through learning from the received compressed data to improve accuracy.
arXiv Detail & Related papers (2024-01-19T15:19:47Z) - Mobile Traffic Prediction at the Edge through Distributed and Transfer
Learning [2.687861184973893]
The research in this topic concentrated on making predictions in a centralized fashion, by collecting data from the different network elements.
We propose a novel prediction framework based on edge computing which uses datasets obtained on the edge through a large measurement campaign.
arXiv Detail & Related papers (2023-10-22T23:48:13Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - Complexity-Driven CNN Compression for Resource-constrained Edge AI [1.6114012813668934]
We propose a novel and computationally efficient pruning pipeline by exploiting the inherent layer-level complexities of CNNs.
We define three modes of pruning, namely parameter-aware (PA), FLOPs-aware (FA), and memory-aware (MA), to introduce versatile compression of CNNs.
arXiv Detail & Related papers (2022-08-26T16:01:23Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
The purpose of the study is to analyse and compare the most common machine learning and deep learning techniques used for computer vision 2D object classification tasks.
Firstly, we will present the theoretical background of the Bag of Visual words model and Deep Convolutional Neural Networks (DCNN)
Secondly, we will implement a Bag of Visual Words model, the VGG16 CNN Architecture.
arXiv Detail & Related papers (2022-04-11T11:34:43Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - EffCNet: An Efficient CondenseNet for Image Classification on NXP
BlueBox [0.0]
Edge devices offer limited processing power due to their inexpensive hardware, and limited cooling and computational resources.
We propose a novel deep convolutional neural network architecture called EffCNet for edge devices.
arXiv Detail & Related papers (2021-11-28T21:32:31Z) - Latency-Memory Optimized Splitting of Convolution Neural Networks for
Resource Constrained Edge Devices [1.6873748786804317]
We argue that running CNNs between an edge device and the cloud is synonymous to solving a resource-constrained optimization problem.
Experiments done on real-world edge devices show that, LMOS ensures feasible execution of different CNN models at the edge.
arXiv Detail & Related papers (2021-07-19T19:39:56Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.