Quantum illumination receiver using double homodyne detection
- URL: http://arxiv.org/abs/2008.11928v3
- Date: Fri, 5 Feb 2021 07:54:33 GMT
- Title: Quantum illumination receiver using double homodyne detection
- Authors: Yonggi Jo, Sangkyung Lee, Yong Sup Ihn, Zaeill Kim, Su-Yong Lee
- Abstract summary: A quantum receiver is an essential element of quantum illumination (QI)
We design a quantum receiver with linear optical elements for Gaussian QI.
We show that our receiver has better signal-to-noise ratio and more robust against noise than the existing simple-structured receivers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A quantum receiver is an essential element of quantum illumination (QI) which
outperforms its classical counterpart, called classical-illumination (CI).
However, there are only few proposals for realizable quantum receiver, which
exploits nonlinear effects leading to increasing the complexity of receiver
setups. To compensate this, in this article, we design a quantum receiver with
linear optical elements for Gaussian QI. Rather than exploiting nonlinear
effect, our receiver consists of a 50:50 beam splitter and homodyne detection.
Using double homodyne detection after the 50:50 beam splitter, we analyze the
performance of the QI in different regimes of target reflectivity, source
power, and noise level. We show that our receiver has better signal-to-noise
ratio and more robust against noise than the existing simple-structured
receivers.
Related papers
- Quantum illumination networks [0.40964539027092906]
We propose a quantum illumination network to overcome the limitations, via designing a transmitter array and a single receiver antenna.
Thanks to multiple transmitters, quantum advantage is achieved even with a high total transmitted power.
We generalize the parameter estimation scenario to a general hypothesis testing scenario, where the six-decibel quantum illumination advantage is achieved at a much greater total probing power.
arXiv Detail & Related papers (2024-06-24T23:34:02Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Microwave Gaussian quantum sensing with a CNOT gate receiver [1.1470070927586016]
In quantum illumination (QI) correlations between continuous variable (CV) entangled modes of radiation are exploited to detect the presence of a target embedded in thermal noise.
Here we propose a new QI receiver that utilizes a CV controlled not gate (CNOT) in order to perform a joint measurement on a target return and its retained twin.
Although the main focus of this study is microwave quantum sensing applications, our proposed device can be built as well in the optical domain.
arXiv Detail & Related papers (2023-07-03T13:45:06Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum Illumination with a Hetero-Homodyne Receiver and Sequential
Detection [0.8714677279673737]
We propose a hetero-homodyne receiver for quantum illumination (QI) target detection.
Unlike prior QI receivers, it uses a cascaded positive operator-valued measurement (POVM) that does not require a quantum interaction between QI's returned radiation and its stored idler.
arXiv Detail & Related papers (2023-03-31T17:00:15Z) - Fano-Qubits for Quantum Devices with Enhanced Isolation and Bandwidth [0.6105362142646117]
Magneto-optical isolators and circulators have been widely used to safeguard quantum devices from reflections and noise in the readout stage.
We propose a new approach to quantum non-reciprocity that utilizes the intrinsic nonlinearity of qubits and broken spatial symmetry.
We show that a circuit containing Lorentz-type qubits can be transformed into Fano-type qubits with an asymmetric spectral response.
arXiv Detail & Related papers (2023-03-17T22:43:52Z) - Readout of a quantum processor with high dynamic range Josephson
parametric amplifiers [132.67289832617647]
Device is matched to the 50 $Omega$ environment with a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain.
A 54-qubit Sycamore processor was used to benchmark these devices.
Design has no adverse effect on system noise, readout fidelity, or qubit dephasing.
arXiv Detail & Related papers (2022-09-16T07:34:05Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Reinforcement-learning calibration of coherent-state receivers on
variable-loss optical channels [0.0]
We study the problem of calibrating a quantum receiver for optical coherent states when transmitted on a quantum optical channel with variable transmissivity.
We optimize the error probability of legacy adaptive receivers, such as Kennedy's and Dolinar's, on average with respect to the channel transmissivity distribution.
arXiv Detail & Related papers (2022-03-18T09:12:19Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.