論文の概要: Relation/Entity-Centric Reading Comprehension
- arxiv url: http://arxiv.org/abs/2008.11940v1
- Date: Thu, 27 Aug 2020 06:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 07:44:08.023561
- Title: Relation/Entity-Centric Reading Comprehension
- Title(参考訳): 関連・人間中心の読書理解
- Authors: Takeshi Onishi
- Abstract要約: 我々は、エンティティとそれらの関係を理解することに焦点を当てて、読書理解について研究する。
自然言語のセマンティクスを表現するために一般的に使用されるため、エンティティと関係に焦点をあてる。
- 参考スコア(独自算出の注目度): 1.0965065178451106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constructing a machine that understands human language is one of the most
elusive and long-standing challenges in artificial intelligence. This thesis
addresses this challenge through studies of reading comprehension with a focus
on understanding entities and their relationships. More specifically, we focus
on question answering tasks designed to measure reading comprehension. We focus
on entities and relations because they are typically used to represent the
semantics of natural language.
- Abstract(参考訳): 人間の言語を理解する機械を構築することは、人工知能における最もありふれた課題の1つだ。
この論文は、エンティティとその関係を理解することに焦点を当てた読解の研究を通じて、この課題に対処している。
具体的には,読解理解度を測定するための質問応答タスクに着目した。
自然言語のセマンティクスを表現するために一般的に使用されるため、エンティティと関係に焦点をあてる。
関連論文リスト
- Evaluating and Analyzing Relationship Hallucinations in Large Vision-Language Models [69.79709804046325]
視覚関係の幻覚を評価するための新しいベンチマークであるR-Benchを紹介する。
R-Benchは、関係の存在に焦点を当てたイメージレベルの質問と、局所的な視覚的理解を評価するインスタンスレベルの質問を特徴としている。
我々は,関係関連性,主観関連性,関係対象性という,幻覚につながる3つの関係共起関係を同定する。
論文 参考訳(メタデータ) (2024-06-24T08:42:42Z) - Identifying Semantic Induction Heads to Understand In-Context Learning [103.00463655766066]
自然言語に存在するトークン間の2種類の関係を,注目ヘッドが符号化するかどうかを検討する。
特定の注意ヘッドは、ヘッドトークンに出席する際、テールトークンをリコールし、テールトークンの出力ロジットを増加させるパターンを示す。
論文 参考訳(メタデータ) (2024-02-20T14:43:39Z) - tagE: Enabling an Embodied Agent to Understand Human Instructions [3.943519623674811]
我々は, Embodied Agent (tagE) のためのタスク・アンド・引数・グラウンドティング(タスク・アンド・引数・グラウンドディング)と呼ばれる新しいシステムを導入する。
本システムでは,自然言語で表現された複雑なタスク命令から一連のタスクを抽出するために,発明的なニューラルネットワークモデルを採用している。
提案モデルでは,入れ子デコードに富んだエンコーダ・デコーダ・フレームワークを用いて,複雑な命令からタスクとその引数を効果的に抽出する。
論文 参考訳(メタデータ) (2023-10-24T08:17:48Z) - SenteCon: Leveraging Lexicons to Learn Human-Interpretable Language
Representations [51.08119762844217]
SenteConは、深層言語表現に人間の解釈可能性を導入する方法である。
SenteConは、下流タスクにおける予測性能にほとんど、あるいは全くコストをかからない高レベルな解釈性を提供する。
論文 参考訳(メタデータ) (2023-05-24T05:06:28Z) - Neural Approaches to Entity-Centric Information Extraction [2.8935588665357077]
テキスト内の情報に対して、根本的に異なるエンティティ中心の視点を導入します。
個々の言及をテキストで意味を理解する代わりに、エンティティの概念の観点で機能するアプリケーションを構築するべきだ、と私たちは主張する。
本研究では,各参照を個別にではなく,コア参照クラスタレベルでエンティティリンクを行うことにより,このタスクを改善することができることを示す。
論文 参考訳(メタデータ) (2023-04-15T20:07:37Z) - DALL-E 2 Fails to Reliably Capture Common Syntactic Processes [0.0]
我々は,DALL-E2が構成性に関連する8つの文法的現象を捉える能力について分析した。
DALL-E 2は構文に整合した意味を確実に推測できないことを示す。
論文 参考訳(メタデータ) (2022-10-23T23:56:54Z) - A Linguistic Investigation of Machine Learning based Contradiction
Detection Models: An Empirical Analysis and Future Perspectives [0.34998703934432673]
本稿では,2つの自然言語推論データセットについて,その言語的特徴について分析する。
目標は、特に機械学習モデルを理解するのが難しい、構文的および意味的特性を特定することである。
論文 参考訳(メタデータ) (2022-10-19T10:06:03Z) - Compositional Processing Emerges in Neural Networks Solving Math
Problems [100.80518350845668]
人工知能の最近の進歩は、大きなモデルが十分な言語データに基づいて訓練されると、文法構造が表現に現れることを示している。
我々は、この研究を数学的推論の領域にまで拡張し、どのように意味を構成するべきかについての正確な仮説を定式化することができる。
私たちの研究は、ニューラルネットワークがトレーニングデータに暗黙的に構造化された関係について何かを推測できるだけでなく、個々の意味の合成を合成全体へと導くために、この知識を展開できることを示している。
論文 参考訳(メタデータ) (2021-05-19T07:24:42Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
そこで本研究では, ERICA という新たなコントラスト学習フレームワークを提案し, エンティティとその関係をテキストでより深く理解する。
実験の結果,提案する erica フレームワークは文書レベルの言語理解タスクにおいて一貫した改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:35:22Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
このようなモチベーションを満たすために,セマンティックス対応推論ネットワーク(SAIN)を提案する。
SAINの推論モジュールは、明示的な文脈的セマンティクスを補完的な入力として、セマンティクス上の一連の推論ステップを可能にする。
本モデルでは,機械読解や自然言語推論など11タスクの大幅な改善を実現している。
論文 参考訳(メタデータ) (2020-04-28T07:24:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。