How Much Ad Viewability is Enough? The Effect of Display Ad Viewability
on Advertising Effectiveness
- URL: http://arxiv.org/abs/2008.12132v1
- Date: Wed, 26 Aug 2020 05:49:57 GMT
- Title: How Much Ad Viewability is Enough? The Effect of Display Ad Viewability
on Advertising Effectiveness
- Authors: Christina Uhl, Nadia Abou Nabout, Klaus Miller
- Abstract summary: We analyze a large-scale observational data set with more than 350,000 ad impressions.
Long exposure durations and 100% visible pixels do not appear to be optimal in generating view-throughs.
Highest view-through rates seem to be generated with relatively lower pixel/second-combinations of 50%/1, 50%/5, 75%/1, and 75%/5.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A large share of all online display advertisements (ads) are never seen by a
human. For instance, an ad could appear below the page fold, where a user never
scrolls. Yet, an ad is essentially ineffective if it is not at least somewhat
viewable. Ad viewability - which refers to the pixel percentage-in-view and the
exposure duration of an online display ad - has recently garnered great
interest among digital advertisers and publishers. However, we know very little
about the impact of ad viewability on advertising effectiveness. We work to
close this gap by analyzing a large-scale observational data set with more than
350,000 ad impressions similar to the data sets that are typically available to
digital advertisers and publishers. This analysis reveals that longer exposure
durations (>10 seconds) and 100% visible pixels do not appear to be optimal in
generating view-throughs. The highest view-through rates seem to be generated
with relatively lower pixel/second-combinations of 50%/1, 50%/5, 75%/1, and
75%/5. However, this analysis does not account for user behavior that may be
correlated with or even drive ad viewability and may therefore result in
endogeneity issues. Consequently, we manipulated ad viewability in a randomized
online experiment for a major European news website, finding the highest ad
recognition rates among relatively higher pixel/second-combinations of 75%/10,
100%/5 and 100%/10. Everything below 75\% or 5 seconds performs worse. Yet, we
find that it may be sufficient to have either a long exposure duration or high
pixel percentage-in-view to reach high advertising effectiveness. Our results
provide guidance to advertisers enabling them to establish target viewability
rates more appropriately and to publishers who wish to differentiate their
viewability products.
Related papers
- AdSEE: Investigating the Impact of Image Style Editing on Advertisement
Attractiveness [25.531489722164178]
We propose Advertisement Style Editing and Attractiveness Enhancement (AdSEE), which explores whether semantic editing to ads images can affect or alter the popularity of online advertisements.
We introduce StyleGAN-based facial semantic editing and inversion to ads images and train a click rate predictor attributing GAN-based face latent representations to click rates.
Online A/B tests performed over a period of 5 days have verified the increased click-through rates of AdSEE-edited samples as compared to a control group of original ads.
arXiv Detail & Related papers (2023-09-15T04:52:49Z) - Long-Term Ad Memorability: Understanding & Generating Memorable Ads [54.23854539909078]
There has been no large-scale study on the memorability of ads.
We release the first memorability dataset, LAMBDA, consisting of 1749 participants and 2205 ads covering 276 brands.
arXiv Detail & Related papers (2023-09-01T10:27:04Z) - Discrimination through Image Selection by Job Advertisers on Facebook [79.21648699199648]
We propose and investigate the prevalence of a new means for discrimination in job advertising.
It combines both targeting and delivery -- through the disproportionate representation or exclusion of people of certain demographics in job ad images.
We use the Facebook Ad Library to demonstrate the prevalence of this practice.
arXiv Detail & Related papers (2023-06-13T03:43:58Z) - Problematic Advertising and its Disparate Exposure on Facebook [15.667983888666312]
We study Facebook and investigate key gaps in our understanding of problematic online advertising.
We find that older people and minority groups are especially likely to be shown such ads.
Given that 22% of problematic ads had no specific targeting from advertisers, we infer that ad delivery algorithms played a significant role in the biased distribution of these ads.
arXiv Detail & Related papers (2023-06-09T17:23:59Z) - Persuasion Strategies in Advertisements [68.70313043201882]
We introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies.
We then formulate the task of persuasion strategy prediction with multi-modal learning.
We conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies.
arXiv Detail & Related papers (2022-08-20T07:33:13Z) - Auditing for Discrimination in Algorithms Delivering Job Ads [70.02478301291264]
We develop a new methodology for black-box auditing of algorithms for discrimination in the delivery of job advertisements.
Our first contribution is to identify the distinction between skew in ad delivery due to protected categories such as gender or race.
Second, we develop an auditing methodology that distinguishes between skew explainable by differences in qualifications from other factors.
Third, we apply our proposed methodology to two prominent targeted advertising platforms for job ads: Facebook and LinkedIn.
arXiv Detail & Related papers (2021-04-09T17:38:36Z) - Predicting Online Video Advertising Effects with Multimodal Deep
Learning [33.20913249848369]
We propose a method for predicting the click through rate (CTR) of video advertisements and analyzing the factors that determine the CTR.
In this paper, we demonstrate an optimized framework for accurately predicting the effects by taking advantage of the multimodal nature of online video advertisements.
arXiv Detail & Related papers (2020-12-22T06:24:01Z) - An Empirical Study of In-App Advertising Issues Based on Large Scale App
Review Analysis [67.58267006314415]
We present a large-scale analysis on ad-related user feedback from App Store and Google Play.
From a statistical analysis of 36,309 ad-related reviews, we find that users care most about the number of unique ads and ad display frequency during usage.
Some ad issue types are addressed more quickly by developers than other ad issues.
arXiv Detail & Related papers (2020-08-22T05:38:24Z) - Do Interruptions Pay Off? Effects of Interruptive Ads on Consumers
Willingness to Pay [79.9312329825761]
We present the results of a study designed to measure the impact of interruptive advertising on consumers willingness to pay for products bearing the advertiser's brand.
Our results contribute to the research on the economic impact of advertising, and introduce a method of measuring actual (as opposed to self-reported) willingness to pay in experimental marketing research.
arXiv Detail & Related papers (2020-05-14T09:26:57Z) - adPerf: Characterizing the Performance of Third-party Ads [5.9535711951131205]
We apply an in-depth and first-of-a-kind performance evaluation of web ads.
We aim to characterize the cost by every component of an ad, so the publisher, ad syndicate, and advertiser can improve the ad's performance with detailed guidance.
arXiv Detail & Related papers (2020-02-06T02:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.