Graph Neural Network Architecture Search for Molecular Property
Prediction
- URL: http://arxiv.org/abs/2008.12187v1
- Date: Thu, 27 Aug 2020 15:30:57 GMT
- Title: Graph Neural Network Architecture Search for Molecular Property
Prediction
- Authors: Shengli Jiang, Prasanna Balaprakash
- Abstract summary: We develop an NAS approach to automate the design and development of graph neural networks (GNNs) for molecular property prediction.
Specifically, we focus on automated development of message-passing neural networks (MPNNs) to predict the molecular properties of small molecules in quantum mechanics and physical chemistry data sets.
- Score: 1.0965065178451106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the properties of a molecule from its structure is a challenging
task. Recently, deep learning methods have improved the state of the art for
this task because of their ability to learn useful features from the given
data. By treating molecule structure as graphs, where atoms and bonds are
modeled as nodes and edges, graph neural networks (GNNs) have been widely used
to predict molecular properties. However, the design and development of GNNs
for a given data set rely on labor-intensive design and tuning of the network
architectures. Neural architecture search (NAS) is a promising approach to
discover high-performing neural network architectures automatically. To that
end, we develop an NAS approach to automate the design and development of GNNs
for molecular property prediction. Specifically, we focus on automated
development of message-passing neural networks (MPNNs) to predict the molecular
properties of small molecules in quantum mechanics and physical chemistry data
sets from the MoleculeNet benchmark. We demonstrate the superiority of the
automatically discovered MPNNs by comparing them with manually designed GNNs
from the MoleculeNet benchmark. We study the relative importance of the choices
in the MPNN search space, demonstrating that customizing the architecture is
critical to enhancing performance in molecular property prediction and that the
proposed approach can perform customization automatically with minimal manual
effort.
Related papers
- ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
We propose an equivariant geometry-enhanced graph neural network called ViSNet, which elegantly extracts geometric features and efficiently models molecular structures.
Our proposed ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical property prediction on QM9 and Molecule3D datasets.
arXiv Detail & Related papers (2022-10-29T07:12:46Z) - Graph Neural Networks for Molecules [9.04563945965023]
This review introduces GNNs and their various applications for small organic molecules.
GNNs rely on message-passing operations, a generic yet powerful framework, to update node features iteratively.
arXiv Detail & Related papers (2022-09-12T20:10:07Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
We propose a diStance-aware Molecule graph Attention Network (S-MAN) tailored to drug-target binding affinity prediction.
As a dedicated solution, we first propose a position encoding mechanism to integrate the topological structure and spatial position information into the constructed pocket-ligand graph.
We also propose a novel edge-node hierarchical attentive aggregation structure which has edge-level aggregation and node-level aggregation.
arXiv Detail & Related papers (2020-12-17T17:44:01Z) - Evolutionary Architecture Search for Graph Neural Networks [23.691915813153496]
We propose a novel AutoML framework through the evolution of individual models in a large Graph Neural Networks (GNN) architecture space.
To the best of our knowledge, this is the first work to introduce and evaluate evolutionary architecture search for GNN models.
arXiv Detail & Related papers (2020-09-21T22:11:53Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.