論文の概要: PIGNet: A physics-informed deep learning model toward generalized
drug-target interaction predictions
- arxiv url: http://arxiv.org/abs/2008.12249v2
- Date: Mon, 13 Dec 2021 06:43:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 08:21:25.920785
- Title: PIGNet: A physics-informed deep learning model toward generalized
drug-target interaction predictions
- Title(参考訳): PIGNet:一般薬物・標的相互作用予測に向けた物理インフォームドディープラーニングモデル
- Authors: Seokhyun Moon, Wonho Zhung, Soojung Yang, Jaechang Lim and Woo Youn
Kim
- Abstract要約: DTIモデルの一般化を促進するための2つの重要な戦略を提案する。
1つ目は、ニューラルネットワークでパラメータ化された物理インフォームド方程式を用いて原子-原子対相互作用を予測することである。
さらに,バインドポーズの幅を拡大し,より広いトレーニングデータに拡張することで,モデル一般化をさらに改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep neural network (DNN)-based drug-target interaction (DTI)
models were highlighted for their high accuracy with affordable computational
costs. Yet, the models' insufficient generalization remains a challenging
problem in the practice of in-silico drug discovery. We propose two key
strategies to enhance generalization in the DTI model. The first is to predict
the atom-atom pairwise interactions via physics-informed equations
parameterized with neural networks and provides the total binding affinity of a
protein-ligand complex as their sum. We further improved the model
generalization by augmenting a broader range of binding poses and ligands to
training data. We validated our model, PIGNet, in the comparative assessment of
scoring functions (CASF) 2016, demonstrating the outperforming docking and
screening powers than previous methods. Our physics-informing strategy also
enables the interpretation of predicted affinities by visualizing the
contribution of ligand substructures, providing insights for further ligand
optimization.
- Abstract(参考訳): 近年,深層ニューラルネットワーク(dnn)を用いた薬物標的相互作用(dti)モデルが,高い精度と手頃な計算コストで注目されている。
しかし、モデルが不十分な一般化は、シリコン内薬物発見の実践において難しい問題である。
DTIモデルの一般化を促進するための2つの重要な戦略を提案する。
第一は、ニューラルネットワークでパラメータ化された物理式による原子-原子対相互作用を予測し、その和としてタンパク質-リガンド複合体の完全な結合親和性を与えることである。
さらに,学習データに対する結合ポーズとリガンドの広い範囲を増強することで,モデルの一般化をさらに改善した。
我々は,従来の手法よりも優れたドッキングとスクリーニング能力を示すため,評価関数(CASF)の2016年比較評価においてPIGNetの有効性を検証した。
我々はまた,リガンド部分構造の寄与を可視化することで,予測親和性の解釈を可能にし,さらなるリガンド最適化の洞察を提供する。
関連論文リスト
- SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
タンパク質-リガンド結合親和性の正確な予測は、薬物開発に不可欠である。
伝統的な手法は、しばしば複合体の空間情報を正確にモデル化するのに失敗する。
この課題に適用可能な様々な帰納バイアスを組み込んだモデルSPINを提案する。
論文 参考訳(メタデータ) (2024-07-10T08:40:07Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - A hybrid quantum-classical fusion neural network to improve
protein-ligand binding affinity predictions for drug discovery [0.0]
本稿では,薬物発見における親和性予測に適したハイブリッド量子古典的深層学習モデルを提案する。
具体的には、最適化量子アーキテクチャにおいて、3次元および空間グラフ畳み込みニューラルネットワークを相乗的に統合する。
シミュレーションの結果、既存の古典的モデルと比較して予測精度が6%向上し、従来の古典的手法に比べてはるかに安定した収束性能を示した。
論文 参考訳(メタデータ) (2023-09-06T11:56:33Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
タンパク質-リガンド相互作用の予測(PLI)は、薬物発見において重要な役割を果たす。
結合親和性を正確に評価し、効率的な仮想スクリーニングを行う汎用モデルの開発は依然として課題である。
本稿では、物理インフォームドグラフニューラルネットワークと組み合わせて、新しいデータ拡張戦略を導入することにより、実現可能なソリューションを提案する。
論文 参考訳(メタデータ) (2023-07-03T14:46:49Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Improved Protein-ligand Binding Affinity Prediction with Structure-Based
Deep Fusion Inference [3.761791311908692]
正確なタンパク質-リガンド結合親和性を予測することは、薬物発見において重要である。
深層畳み込みとグラフニューラルネットワークに基づくアプローチの最近の進歩により、モデルの性能は入力データ表現に依存する。
結合親和性予測を改善するため、2つのニューラルネットワークモデルの異なる特徴表現の恩恵を受けるための融合モデルを提案する。
論文 参考訳(メタデータ) (2020-05-17T22:26:27Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。