論文の概要: PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening
- arxiv url: http://arxiv.org/abs/2307.01066v2
- Date: Mon, 17 Jul 2023 08:30:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 19:55:26.841138
- Title: PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening
- Title(参考訳): PIGNet2: 結合親和性検査と仮想スクリーニングのための深層学習に基づくタンパク質-リガンド相互作用予測モデル
- Authors: Seokhyun Moon, Sang-Yeon Hwang, Jaechang Lim, and Woo Youn Kim
- Abstract要約: タンパク質-リガンド相互作用の予測(PLI)は、薬物発見において重要な役割を果たす。
結合親和性を正確に評価し、効率的な仮想スクリーニングを行う汎用モデルの開発は依然として課題である。
本稿では、物理インフォームドグラフニューラルネットワークと組み合わせて、新しいデータ拡張戦略を導入することにより、実現可能なソリューションを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction of protein-ligand interactions (PLI) plays a crucial role in drug
discovery as it guides the identification and optimization of molecules that
effectively bind to target proteins. Despite remarkable advances in deep
learning-based PLI prediction, the development of a versatile model capable of
accurately scoring binding affinity and conducting efficient virtual screening
remains a challenge. The main obstacle in achieving this lies in the scarcity
of experimental structure-affinity data, which limits the generalization
ability of existing models. Here, we propose a viable solution to address this
challenge by introducing a novel data augmentation strategy combined with a
physics-informed graph neural network. The model showed significant
improvements in both scoring and screening, outperforming task-specific deep
learning models in various tests including derivative benchmarks, and notably
achieving results comparable to the state-of-the-art performance based on
distance likelihood learning. This demonstrates the potential of this approach
to drug discovery.
- Abstract(参考訳): タンパク質-リガンド相互作用の予測(PLI)は、標的タンパク質に効果的に結合する分子の同定と最適化を導くため、薬物発見において重要な役割を果たす。
深層学習に基づくPLI予測の顕著な進歩にもかかわらず、結合親和性を正確に評価し、効率的な仮想スクリーニングを行う汎用モデルの開発は依然として課題である。
これを実現する上での大きな障害は、既存のモデルの一般化能力を制限する実験的な構造親和性データの不足にある。
本稿では,新しいデータ拡張戦略とグラフニューラルネットワークを組み合わせることで,この課題に対処するための有効な解決策を提案する。
このモデルは、スコアとスクリーニングの両方において大きな改善を示し、デリバティブベンチマークを含む様々なテストでタスク固有のディープラーニングモデルよりもパフォーマンスが向上し、特に、遠距離確率学習に基づく最先端のパフォーマンスに匹敵する結果を達成した。
これは薬物発見へのこのアプローチの可能性を示している。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - On Machine Learning Approaches for Protein-Ligand Binding Affinity Prediction [2.874893537471256]
本研究では,タンパク質-リガンド結合親和性予測における古典的木モデルと高度なニューラルネットワークの性能を評価する。
2次元モデルと3次元モデルを組み合わせることで、現在の最先端のアプローチを超えて、アクティブな学習結果が向上することを示す。
論文 参考訳(メタデータ) (2024-07-15T13:06:00Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - PIGNet: A physics-informed deep learning model toward generalized
drug-target interaction predictions [0.0]
DTIモデルの一般化を促進するための2つの重要な戦略を提案する。
1つ目は、ニューラルネットワークでパラメータ化された物理インフォームド方程式を用いて原子-原子対相互作用を予測することである。
さらに,バインドポーズの幅を拡大し,より広いトレーニングデータに拡張することで,モデル一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-08-22T14:29:58Z) - Improved Protein-ligand Binding Affinity Prediction with Structure-Based
Deep Fusion Inference [3.761791311908692]
正確なタンパク質-リガンド結合親和性を予測することは、薬物発見において重要である。
深層畳み込みとグラフニューラルネットワークに基づくアプローチの最近の進歩により、モデルの性能は入力データ表現に依存する。
結合親和性予測を改善するため、2つのニューラルネットワークモデルの異なる特徴表現の恩恵を受けるための融合モデルを提案する。
論文 参考訳(メタデータ) (2020-05-17T22:26:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。