論文の概要: Certainty Equivalent Perception-Based Control
- arxiv url: http://arxiv.org/abs/2008.12332v2
- Date: Fri, 16 Apr 2021 19:45:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 07:36:43.792661
- Title: Certainty Equivalent Perception-Based Control
- Title(参考訳): 等価知覚に基づく制御
- Authors: Sarah Dean and Benjamin Recht
- Abstract要約: 動的に達成可能な高密度サンプリングスキームの下で,非カーネル回帰に拘束される一様誤差を示す。
これにより、経路追跡のためにクローズドループの回帰器を使用する場合の準最適性に対する有限時間収束率が得られる。
- 参考スコア(独自算出の注目度): 29.216967322052785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to certify performance and safety, feedback control requires precise
characterization of sensor errors. In this paper, we provide guarantees on such
feedback systems when sensors are characterized by solving a supervised
learning problem. We show a uniform error bound on nonparametric kernel
regression under a dynamically-achievable dense sampling scheme. This allows
for a finite-time convergence rate on the sub-optimality of using the regressor
in closed-loop for waypoint tracking. We demonstrate our results in simulation
with simplified unmanned aerial vehicle and autonomous driving examples.
- Abstract(参考訳): 性能と安全性を確認するために、フィードバック制御はセンサエラーの正確なキャラクタリゼーションを必要とする。
本稿では,センサが教師付き学習問題を解くことにより,そのようなフィードバックシステムに保証を与える。
動的に達成可能な高密度サンプリングスキームの下で,非パラメトリックカーネル回帰に拘束される一様誤差を示す。
これにより、経路追跡のためにクローズドループの回帰器を使用する場合の準最適性に対する有限時間収束率が得られる。
我々は、簡易無人航空機と自律運転の例を用いて、シミュレーションの結果を実証する。
関連論文リスト
- Model-based Validation as Probabilistic Inference [37.61747231296097]
障害に対する分散を推定することは、自律システムを検証するための重要なステップである。
逐次システムの故障軌道上の分布をベイズ推定として推定する。
本手法は, 逆振子制御システム, 自律走行シナリオ, 部分的に観測可能な月面着陸機で実証された。
論文 参考訳(メタデータ) (2023-05-17T03:27:36Z) - Constrained Reinforcement Learning using Distributional Representation for Trustworthy Quadrotor UAV Tracking Control [2.325021848829375]
本研究では, 未知の空力効果に対する分散強化学習障害推定器を統合した新しいトラジェクトリトラッカーを提案する。
提案手法は, 空気力学効果の真値と推定値の不確かさを正確に同定する。
本システムは,最近の技術と比較して,累積追尾誤差を少なくとも70%改善することを示した。
論文 参考訳(メタデータ) (2023-02-22T23:15:56Z) - Testing Rare Downstream Safety Violations via Upstream Adaptive Sampling
of Perception Error Models [20.815131169609316]
本稿では,センサベース検出システムにおける知覚誤差モデルと,状態依存適応的重要度サンプリングを組み合わせる。
RGB障害物検出器を備えた自律制動システムを用いた実験により, 精度の高い故障確率を算出できることが判明した。
論文 参考訳(メタデータ) (2022-09-20T12:26:06Z) - Improving the Performance of Robust Control through Event-Triggered
Learning [74.57758188038375]
LQR問題における不確実性に直面していつ学習するかを決定するイベントトリガー学習アルゴリズムを提案する。
本研究では,ロバストな制御器ベースライン上での性能向上を数値例で示す。
論文 参考訳(メタデータ) (2022-07-28T17:36:37Z) - Interpretable Stochastic Model Predictive Control using Distributional
Reinforced Estimation for Quadrotor Tracking Systems [0.8411385346896411]
本研究では,動的・複雑環境下での自律的四角形ナビゲーションのためのトラジェクトリトラッカーを提案する。
提案フレームワークは,未知の空力効果に対する分散強化学習推定器をモデル予測制御器に統合する。
我々は,未知かつ多様な空気力を用いて,累積追従誤差を少なくとも66%改善するシステムを実証した。
論文 参考訳(メタデータ) (2022-05-14T23:27:38Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Finite-time System Identification and Adaptive Control in Autoregressive
Exogenous Systems [79.67879934935661]
未知のARXシステムのシステム識別と適応制御の問題について検討する。
我々は,オープンループとクローズループの両方のデータ収集の下で,ARXシステムに対する有限時間学習保証を提供する。
論文 参考訳(メタデータ) (2021-08-26T18:00:00Z) - Control of Stochastic Quantum Dynamics with Differentiable Programming [0.0]
微分可能プログラミングに基づく制御スキームの自動設計のためのフレームワークを提案する。
このアプローチを、ホモジエン検出を受けるクビットの状態準備と安定化に適用する。
その結果、信号と雑音の比が低いにもかかわらず、平均忠実度が約85%の目標状態へのキュービットの準備と安定化をコントローラに教えることができる。
論文 参考訳(メタデータ) (2021-01-04T19:00:03Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。