論文の概要: Are Deep Neural Networks "Robust"?
- arxiv url: http://arxiv.org/abs/2008.12650v1
- Date: Tue, 25 Aug 2020 16:57:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 03:15:08.782897
- Title: Are Deep Neural Networks "Robust"?
- Title(参考訳): ディープニューラルネットワークは"ロバスト"か?
- Authors: Peter Meer
- Abstract要約: 不整合から外周を分離することは、コンピュータビジョンにおける堅牢性の定義である。
このエッセイは、ディープニューラルネットワークが典型的なロバストな推定器とどのように異なるかを説明する。
- 参考スコア(独自算出の注目度): 2.538209532048867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Separating outliers from inliers is the definition of robustness in computer
vision. This essay delineates how deep neural networks are different than
typical robust estimators. Deep neural networks not robust by this traditional
definition.
- Abstract(参考訳): 外れ値と外れ値の分離は、コンピュータビジョンにおけるロバスト性の定義である。
このエッセイは、ディープニューラルネットワークが典型的なロバストな推定器とどのように異なるかを示している。
ディープニューラルネットワークは、この従来の定義では堅牢ではない。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - DeepCSHAP: Utilizing Shapley Values to Explain Deep Complex-Valued
Neural Networks [7.4841568561701095]
ディープニューラルネットワークは、アカデミーや企業や公共のアプリケーションで広く使われている。
アウトプットを説明する能力は、安全上の理由だけでなく、応募者の受け入れにも不可欠である。
複素数値ニューラルネットワークでの使用に適した4つの勾配に基づく説明法を提案する。
論文 参考訳(メタデータ) (2024-03-13T11:26:43Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
ニューラルネットワークのランクは、層をまたがる情報を測定する。
これは機械学習の幅広い領域にまたがる重要な構造条件の例である。
しかし、ニューラルネットワークでは、低ランク構造を生み出す固有のメカニズムはあいまいで不明瞭である。
論文 参考訳(メタデータ) (2022-06-13T12:03:32Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
使用中のニューラルネットワークの主要なタイプであるニューラルネットワークについて研究する。
最適化されたニューラルネットワークの幅が無限大になる傾向があるため、トレーニングセットの予測分散はゼロになる。
論文 参考訳(メタデータ) (2022-01-30T04:52:31Z) - Building Compact and Robust Deep Neural Networks with Toeplitz Matrices [93.05076144491146]
この論文は、コンパクトで、訓練が容易で、信頼性があり、敵の例に対して堅牢なニューラルネットワークを訓練する問題に焦点を当てている。
Toeplitzファミリーの構造化行列の特性を利用して、コンパクトでセキュアなニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2021-09-02T13:58:12Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - Identifying and interpreting tuning dimensions in deep networks [83.59965686504822]
チューニングディメンションは、ニューロン群の活性化分散の大部分を占める刺激特性である。
この研究は、ディープ・ネットワークにおける「チューニング・ディメンション」を特定し解釈するための教師なしのフレームワークに貢献している。
論文 参考訳(メタデータ) (2020-11-05T21:26:03Z) - On Numerosity of Deep Neural Networks [24.812267280543693]
視覚的物体認識のためだけに訓練されたディープニューラルネットワークにおいて,数感覚が自然に現れるという主張を実証する。
この主張を支持する統計的分析は、数認識ニューロンを特定するために使用されるサンプルセットが小さすぎることに欠陥がある。
ディープニューラルネットワークが、少数の数に対して、大人数よりも分布シフトに対して堅牢であることを示す、励まし証拠がいくつか見出されている。
論文 参考訳(メタデータ) (2020-11-01T15:30:43Z) - Theoretical Analysis of the Advantage of Deepening Neural Networks [0.0]
ディープニューラルネットワークによって計算可能な関数の表現性を知ることが重要である。
この2つの基準により,深層ニューラルネットワークの表現性を向上させる上で,各層におけるユニットの増加よりも,レイヤの増加の方が効果的であることを示す。
論文 参考訳(メタデータ) (2020-09-24T04:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。