論文の概要: Building Compact and Robust Deep Neural Networks with Toeplitz Matrices
- arxiv url: http://arxiv.org/abs/2109.00959v1
- Date: Thu, 2 Sep 2021 13:58:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 17:28:04.605865
- Title: Building Compact and Robust Deep Neural Networks with Toeplitz Matrices
- Title(参考訳): toeplitz行列を用いたコンパクトでロバストなディープニューラルネットワークの構築
- Authors: Alexandre Araujo
- Abstract要約: この論文は、コンパクトで、訓練が容易で、信頼性があり、敵の例に対して堅牢なニューラルネットワークを訓練する問題に焦点を当てている。
Toeplitzファミリーの構造化行列の特性を利用して、コンパクトでセキュアなニューラルネットワークを構築する。
- 参考スコア(独自算出の注目度): 93.05076144491146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are state-of-the-art in a wide variety of tasks,
however, they exhibit important limitations which hinder their use and
deployment in real-world applications. When developing and training neural
networks, the accuracy should not be the only concern, neural networks must
also be cost-effective and reliable. Although accurate, large neural networks
often lack these properties. This thesis focuses on the problem of training
neural networks which are not only accurate but also compact, easy to train,
reliable and robust to adversarial examples. To tackle these problems, we
leverage the properties of structured matrices from the Toeplitz family to
build compact and secure neural networks.
- Abstract(参考訳): ディープニューラルネットワークは、さまざまなタスクにおいて最先端にあるが、現実のアプリケーションでの使用とデプロイを妨げる重要な制限がある。
ニューラルネットワークの開発とトレーニングを行う場合、精度が唯一の関心事であるだけでなく、ニューラルネットワークはコスト効率と信頼性も必要である。
正確ではあるが、大きなニューラルネットワークはしばしばこれらの特性を欠いている。
この論文は、精度だけでなく、コンパクトで、訓練が容易で、信頼性が高く、逆の例にロバストなニューラルネットワークを訓練する問題に焦点を当てている。
これらの問題に対処するために、Toeplitzファミリーの構造化行列の特性を活用し、コンパクトでセキュアなニューラルネットワークを構築する。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Verified Neural Compressed Sensing [58.98637799432153]
精度の高い計算タスクのために、初めて(私たちの知識を最大限に活用するために)証明可能なニューラルネットワークを開発します。
極小問題次元(最大50)では、線形および双項線形測定からスパースベクトルを確実に回復するニューラルネットワークを訓練できることを示す。
ネットワークの複雑さは問題の難易度に適応できることを示し、従来の圧縮センシング手法が証明不可能な問題を解く。
論文 参考訳(メタデータ) (2024-05-07T12:20:12Z) - Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
自己回帰型ニューラルネットワーク、畳み込み型ニューラルネットワーク、リカレントニューラルネットワーク、グラフニューラルネットワークなど、多くのディープニューラルネットワークがIsingモデルの解決に使用されている。
本稿では、スピン変数間の相互作用を効果的に活用できるメッセージパッシング機構を備えた変分自己回帰アーキテクチャを提案する。
新しいネットワークは、アニーリングフレームワークの下で訓練され、いくつかの原型スピンハミルトニアンの解法、特に低温での大きなスピン系において、既存の方法よりも優れている。
論文 参考訳(メタデータ) (2024-04-09T11:27:07Z) - Quantum-Inspired Analysis of Neural Network Vulnerabilities: The Role of
Conjugate Variables in System Attacks [54.565579874913816]
ニューラルネットワークは、敵の攻撃として現れる小さな非ランダムな摂動に固有の脆弱性を示す。
この機構と量子物理学の不確実性原理の間に数学的に一致し、予想外の学際性に光を当てる。
論文 参考訳(メタデータ) (2024-02-16T02:11:27Z) - Set-Based Training for Neural Network Verification [8.97708612393722]
小さな入力摂動はニューラルネットワークの出力に大きな影響を与える。
安全クリティカルな環境では、入力はノイズの多いセンサーデータを含むことが多い。
我々は、堅牢なニューラルネットワークをトレーニングして正式な検証を行う、エンドツーエンドのセットベーストレーニング手順を採用している。
論文 参考訳(メタデータ) (2024-01-26T15:52:41Z) - Neural Network Pruning as Spectrum Preserving Process [7.386663473785839]
行列スペクトル学習とニューラルネットワーク学習の密集層と畳み込み層との密接な関係を同定する。
本稿では,ニューラルネットワークのプルーニングに適した行列スペーシフィケーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-18T05:39:32Z) - Neural Network Quantization for Efficient Inference: A Survey [0.0]
ニューラルネットワークの量子化は、最近、ニューラルネットワークのサイズと複雑さを減らすというこの要求を満たすために発生した。
本稿では,過去10年間に開発された多くのニューラルネットワーク量子化技術について検討する。
論文 参考訳(メタデータ) (2021-12-08T22:49:39Z) - Provable Regret Bounds for Deep Online Learning and Control [77.77295247296041]
我々は、損失関数がニューラルネットワークのパラメータを最適化するために適応できることを示し、後から最も優れたネットと競合することを示す。
オンライン設定におけるこれらの結果の適用として、オンライン制御コントローラの証明可能なバウンダリを得る。
論文 参考訳(メタデータ) (2021-10-15T02:13:48Z) - Tiny Adversarial Mulit-Objective Oneshot Neural Architecture Search [35.362883630015354]
モバイルデバイスにデプロイされるほとんどのニューラルネットワークモデルは小さい。
しかし、小さなニューラルネットワークは一般に攻撃に対して非常に脆弱である。
私たちの研究は、モバイルレベルのリソースの下でクリーンな精度を損なうことなく、小さなニューラルネットワークの堅牢性を改善する方法にフォーカスしています。
論文 参考訳(メタデータ) (2021-02-28T00:54:09Z) - Provably Training Neural Network Classifiers under Fairness Constraints [70.64045590577318]
過パラメータのニューラルネットワークが制約を満たしていることを示す。
公平なニューラルネットワーク分類器を構築する上で重要な要素は、ニューラルネットワークの非応答解析を確立することである。
論文 参考訳(メタデータ) (2020-12-30T18:46:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。