論文の概要: Self-Organizing Map assisted Deep Autoencoding Gaussian Mixture Model
for Intrusion Detection
- arxiv url: http://arxiv.org/abs/2008.12686v1
- Date: Fri, 28 Aug 2020 14:41:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 01:46:11.778639
- Title: Self-Organizing Map assisted Deep Autoencoding Gaussian Mixture Model
for Intrusion Detection
- Title(参考訳): 侵入検出のための自己組織マップ支援深部自動符号化ガウス混合モデル
- Authors: Yang Chen, Nami Ashizawa, Seanglidet Yean, Chai Kiat Yeo, Naoto Yanai
- Abstract要約: 自己組織化マップを用いた深部自己符号化ガウス混合モデル(SOMDAGMM)を提案する。
我々は,SOM-DAGMMがすべての試験において最先端のDAGMMより優れ,F1スコアが最大15.58%向上し,安定性が向上したことを示す。
- 参考スコア(独自算出の注目度): 5.816369205244904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the information age, a secure and stable network environment is essential
and hence intrusion detection is critical for any networks. In this paper, we
propose a self-organizing map assisted deep autoencoding Gaussian mixture model
(SOMDAGMM) supplemented with well-preserved input space topology for more
accurate network intrusion detection. The deep autoencoding Gaussian mixture
model comprises a compression network and an estimation network which is able
to perform unsupervised joint training. However, the code generated by the
autoencoder is inept at preserving the topology of the input space, which is
rooted in the bottleneck of the adopted deep structure. A self-organizing map
has been introduced to construct SOMDAGMM for addressing this issue. The
superiority of the proposed SOM-DAGMM is empirically demonstrated with
extensive experiments conducted upon two datasets. Experimental results show
that SOM-DAGMM outperforms state-of-the-art DAGMM on all tests, and achieves up
to 15.58% improvement in F1 score and with better stability.
- Abstract(参考訳): 情報時代においては、安全で安定したネットワーク環境が不可欠であるため、侵入検知はあらゆるネットワークにとって重要である。
本稿では,より正確なネットワーク侵入検出のために,よく保存された入力空間トポロジーを補足した,深層自己符号化型ガウス混合モデル(somdagmm)を提案する。
深層自己符号化ガウス混合モデルは、非教師なし合同訓練が可能な圧縮ネットワークと推定ネットワークとを含む。
しかし、オートエンコーダによって生成されたコードは、採用されている深層構造のボトルネックに根ざした入力空間のトポロジを保存できない。
この問題に対処するためのSOMDAGMMを構築するための自己組織化マップが導入された。
提案したSOM-DAGMMの優位性は、2つのデータセットに対して広範な実験を行うことで実証的に実証される。
実験の結果、SOM-DAGMMは全ての試験において最先端のDAGMMより優れ、F1スコアが最大15.58%向上し、安定性が向上した。
関連論文リスト
- MA^2: A Self-Supervised and Motion Augmenting Autoencoder for Gait-Based Automatic Disease Detection [7.483446634501235]
グラウンド・リアクション・フォース(英語: Ground reaction force、GRF)は、グラウンドが物体に接触して働く力である。
GRFをベースとした自動疾患検出(ADD)が,新たな診断方法となった。
論文 参考訳(メタデータ) (2024-11-05T14:21:01Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - Predicting Transonic Flowfields in Non-Homogeneous Unstructured Grids Using Autoencoder Graph Convolutional Networks [0.0]
本稿では,計算流体力学(CFD)においてよく用いられる非均一非構造格子による問題に対処することに焦点を当てる。
我々のアプローチの核となるのは幾何学的深層学習、特にグラフ畳み込みネットワーク(GCN)の利用である。
新規なAutoencoder GCNアーキテクチャは、情報を遠隔ノードに伝播し、影響力のある点を強調することにより、予測精度を向上させる。
論文 参考訳(メタデータ) (2024-05-07T15:18:21Z) - Incremental Multimodal Surface Mapping via Self-Organizing Gaussian
Mixture Models [1.0878040851638]
本文では,環境を連続確率モデルとして表わすインクリメンタルなマルチモーダル表面マッピング手法について述べる。
この研究で使用される戦略は環境を表現するためにガウス混合モデル(GMM)を用いる。
このギャップを埋めるために,高速GMMサブマップ抽出のための空間ハッシュマップを導入する。
論文 参考訳(メタデータ) (2023-09-19T19:49:03Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Identification of complex mixtures for Raman spectroscopy using a novel
scheme based on a new multi-label deep neural network [0.0]
本稿では,定数ウェーブレット変換(CWT)と複雑な混合物を分類するためのディープネットワークに基づく新しいスキームを提案する。
次に、多ラベルディープニューラルネットワークモデル(MDNN)を材料分類に適用する。
本モデルから得られた平均検出時間は5.31秒であり,従来提案したモデルよりもはるかに高速である。
論文 参考訳(メタデータ) (2020-10-29T14:58:39Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference [55.35176938713946]
我々は、ガンマ分布の階層構造を用いて、その多確率層生成ネットワークを構築するディープ・オートエンコーディング・トピック・モデル(DATM)を開発した。
Weibull上向き変分エンコーダを提案する。このエンコーダは深層ニューラルネットワークを介して情報を上向きに伝播し,次いで下向き生成モデルを提案する。
大規模コーパス上での教師なしおよび教師なしの学習タスクにおいて,モデルの有効性とスケーラビリティを実証した。
論文 参考訳(メタデータ) (2020-06-15T22:22:56Z) - Dissimilarity Mixture Autoencoder for Deep Clustering [0.0]
異種混合オートエンコーダ(DMAE)は、特徴ベースのクラスタリングのためのニューラルネットワークモデルである。
DMAEはディープラーニングアーキテクチャをエンドツーエンドモデルに統合することができる。
論文 参考訳(メタデータ) (2020-06-15T07:08:59Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
本研究は、ファシズムモデルのための連続パラメータ化を構築するためのオートエンコーダネットワークの利用に焦点を当てる。
本稿では,VAE,GAN,Wasserstein GAN,変分自動符号化GAN,サイクルGANの主成分分析(PCA),転送スタイルネットワークのPCA,スタイル損失のVAEの7種類の定式化をベンチマークする。
論文 参考訳(メタデータ) (2020-05-08T21:32:42Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。