論文の概要: Predicting Transonic Flowfields in Non-Homogeneous Unstructured Grids Using Autoencoder Graph Convolutional Networks
- arxiv url: http://arxiv.org/abs/2405.04396v1
- Date: Tue, 7 May 2024 15:18:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 13:41:05.404570
- Title: Predicting Transonic Flowfields in Non-Homogeneous Unstructured Grids Using Autoencoder Graph Convolutional Networks
- Title(参考訳): オートエンコーダグラフ畳み込みネットワークを用いた非均一非構造格子内の超音速流れ場予測
- Authors: Gabriele Immordino, Andrea Vaiuso, Andrea Da Ronch, Marcello Righi,
- Abstract要約: 本稿では,計算流体力学(CFD)においてよく用いられる非均一非構造格子による問題に対処することに焦点を当てる。
我々のアプローチの核となるのは幾何学的深層学習、特にグラフ畳み込みネットワーク(GCN)の利用である。
新規なAutoencoder GCNアーキテクチャは、情報を遠隔ノードに伝播し、影響力のある点を強調することにより、予測精度を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on addressing challenges posed by non-homogeneous unstructured grids, commonly used in Computational Fluid Dynamics (CFD). Their prevalence in CFD scenarios has motivated the exploration of innovative approaches for generating reduced-order models. The core of our approach centers on geometric deep learning, specifically the utilization of graph convolutional network (GCN). The novel Autoencoder GCN architecture enhances prediction accuracy by propagating information to distant nodes and emphasizing influential points. This architecture, with GCN layers and encoding/decoding modules, reduces dimensionality based on pressure-gradient values. The autoencoder structure improves the network capability to identify key features, contributing to a more robust and accurate predictive model. To validate the proposed methodology, we analyzed two different test cases: wing-only model and wing--body configuration. Precise reconstruction of steady-state distributed quantities within a two-dimensional parametric space underscores the reliability and versatility of the implemented approach.
- Abstract(参考訳): 本稿では,計算流体力学(CFD)においてよく用いられる非均一非構造格子による問題に対処することに焦点を当てる。
CFDシナリオにおけるそれらの普及は、低次モデルを生成する革新的なアプローチの探求を動機付けている。
アプローチの核となるのは幾何学的深層学習,特にグラフ畳み込みネットワーク(GCN)の利用である。
新規なAutoencoder GCNアーキテクチャは、情報を遠隔ノードに伝播し、影響力のある点を強調することにより、予測精度を向上させる。
このアーキテクチャは、GCN層とエンコーディング/デコードモジュールによって、圧力勾配値に基づいて次元性を減少させる。
オートエンコーダ構造は、重要な特徴を特定するためのネットワーク能力を改善し、より堅牢で正確な予測モデルに寄与する。
提案手法を検証するために,翼のみのモデルと翼体構成の2つの異なるテストケースを解析した。
2次元パラメトリック空間内の定常分布量の高精度な再構成は、実装されたアプローチの信頼性と汎用性を示している。
関連論文リスト
- GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
本研究は,多忠実度アプリケーションのための新しい分解能不変モデルオーダー削減戦略を提案する。
我々はこの研究で開発された新しいニューラルネットワーク層、グラフフィードフォワードネットワークに基づいてアーキテクチャを構築した。
パラメトリックな偏微分方程式に対する自己エンコーダに基づく還元戦略において,異なるメッシュサイズでのトレーニングとテストの能力を利用する。
論文 参考訳(メタデータ) (2024-06-05T18:31:37Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Symplectic Autoencoders for Model Reduction of Hamiltonian Systems [0.0]
長期の数値安定性を確保するためには,システムに関連するシンプレクティックな構造を維持することが重要である。
本稿では,次元削減のための確立されたツールであるオートエンコーダの精神の中で,新しいニューラルネットワークアーキテクチャを提案する。
ネットワークのトレーニングには,非標準勾配降下法を適用した。
論文 参考訳(メタデータ) (2023-12-15T18:20:25Z) - Identification of vortex in unstructured mesh with graph neural networks [0.0]
本稿では,非構造化メッシュ上でのCFD結果の渦を特定するために,U-Netアーキテクチャを用いたグラフニューラルネットワーク(GNN)に基づくモデルを提案する。
2次元CFDメッシュにおける渦領域をラベル付けするための渦自動ラベル法を提案する。
論文 参考訳(メタデータ) (2023-11-11T12:10:16Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
ランダム性により、SCNは冗長で品質の低い近似線形相関ノードを生成する可能性が高まる。
機械学習の基本原理、すなわち、パラメータが少ないモデルでは、一般化が向上する。
本稿では,ネットワーク構造低減のために,低品質な隠れノードをフィルタする直交SCN(OSCN)を提案する。
論文 参考訳(メタデータ) (2022-05-26T07:07:26Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
我々は,無線通信網におけるエネルギー効率を最大化する新しいグラフ要約フレームワークを開発した。
無線ネットワークデータのモデルに望ましい特性である置換訓練について述べる。
結果は、異なるネットワークトポロジにまたがる一般化可能性を示している。
論文 参考訳(メタデータ) (2022-01-27T20:23:24Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。