論文の概要: Control on the Manifolds of Mappings with a View to the Deep Learning
- arxiv url: http://arxiv.org/abs/2008.12702v2
- Date: Mon, 1 Mar 2021 12:54:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 02:41:36.473754
- Title: Control on the Manifolds of Mappings with a View to the Deep Learning
- Title(参考訳): 深層学習を考慮した写像の多様体制御
- Authors: Andrei Agrachev, Andrey Sarychev
- Abstract要約: 目標は、入力出力マップが有限または無限のトレーニングセット上の所望のマップをうまく近似するニューラルネットワークを見つけることである。
我々のアイデアは、非線形連続時間制御系から生じる入出力マップを近似するものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning of the Artificial Neural Networks (ANN) can be treated as a
particular class of interpolation problems. The goal is to find a neural
network whose input-output map approximates well the desired map on a finite or
an infinite training set. Our idea consists of taking as an approximant the
input-output map, which arises from a nonlinear continuous-time control system.
In the limit such control system can be seen as a network with a continuum of
layers, each one labelled by the time variable. The values of the controls at
each instant of time are the parameters of the layer.
- Abstract(参考訳): ニューラルネットワーク(ANN)の深層学習は補間問題の特定のクラスとして扱うことができる。
目的は、入力出力マップが有限または無限のトレーニングセット上の所望のマップをうまく近似するニューラルネットワークを見つけることである。
我々のアイデアは、非線形連続時間制御系から生じる入出力マップを近似するものである。
この制限下では、そのような制御システムは、時間変数によってラベル付けされた各層が連続したネットワークと見なすことができる。
各時点における制御の値は、その層のパラメータである。
関連論文リスト
- Half-Space Feature Learning in Neural Networks [2.3249139042158853]
現在、ニューラルネットワークの特徴学習には2つの極端な視点がある。
どちらの解釈も、新しい観点からは正しいとは考えにくい。
私たちはこの代替解釈を使って、Deep Linearly Gated Network (DLGN)と呼ばれるモデルを動かす。
論文 参考訳(メタデータ) (2024-04-05T12:03:19Z) - Generative Kaleidoscopic Networks [2.321684718906739]
我々は、このニューラルネットワークの特性を利用して、ジェネレーティブ・カレイドスコープと呼ばれるデータセット・カレイドスコープを設計する。
我々は、CNN、Transformers、U-Netsといった他のディープラーニングアーキテクチャに対して、この現象を様々な程度に観測した。
論文 参考訳(メタデータ) (2024-02-19T02:48:40Z) - Parallel Learning by Multitasking Neural Networks [1.6799377888527685]
現代の人工知能の課題は、複数のパターンを同時に学習することだ。
マルチタスク・ヘビアン・ネットワークは,このような複雑なタスクを自然に行うことができることを示す。
論文 参考訳(メタデータ) (2023-08-08T07:43:31Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
本稿では,動的に駆動する制御フィールドをベースとした,AutoencODEと呼ばれる新しいタイプの連続時間制御システムを提案する。
損失関数が局所凸な領域では,多くのアーキテクチャが復元可能であることを示す。
論文 参考訳(メタデータ) (2023-07-05T13:26:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - How and what to learn:The modes of machine learning [7.085027463060304]
本稿では, 重み経路解析(WPA)と呼ばれる新しい手法を提案し, 多層ニューラルネットワークのメカニズムについて検討する。
WPAは、ニューラルネットワークが情報を「ホログラフィック」な方法で保存し、活用していることを示し、ネットワークはすべてのトレーニングサンプルをコヒーレントな構造にエンコードする。
隠れた層状ニューロンは学習過程の後半で異なるクラスに自己組織化することが判明した。
論文 参考訳(メタデータ) (2022-02-28T14:39:06Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Locality Guided Neural Networks for Explainable Artificial Intelligence [12.435539489388708]
LGNN(Locality Guided Neural Network)と呼ばれる,バック伝搬のための新しいアルゴリズムを提案する。
LGNNはディープネットワークの各層内の隣接ニューロン間の局所性を保っている。
実験では,CIFAR100 上の画像分類のための様々な VGG と Wide ResNet (WRN) ネットワークを訓練した。
論文 参考訳(メタデータ) (2020-07-12T23:45:51Z) - Applications of Koopman Mode Analysis to Neural Networks [52.77024349608834]
我々は,ニューラルネットワークのトレーニング過程を,高次元の重み空間に作用する力学系と考える。
アーキテクチャに必要なレイヤ数を決定するために、Koopmanスペクトルをどのように利用できるかを示す。
また、Koopmanモードを使えば、ネットワークを選択的にプーンしてトレーニング手順を高速化できることを示す。
論文 参考訳(メタデータ) (2020-06-21T11:00:04Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。