Hierarchical Marketing Mix Models with Sign Constraints
- URL: http://arxiv.org/abs/2008.12802v1
- Date: Fri, 28 Aug 2020 18:16:21 GMT
- Title: Hierarchical Marketing Mix Models with Sign Constraints
- Authors: Hao Chen, Minguang Zhang, Lanshan Han, Alvin Lim
- Abstract summary: We propose a comprehensive marketing mix model that captures the hierarchical structure and the carryover, shape and scale effects of certain marketing activities.
We present results on real datasets to illustrate the use of the proposed solution algorithm.
- Score: 4.809398486166832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Marketing mix models (MMMs) are statistical models for measuring the
effectiveness of various marketing activities such as promotion, media
advertisement, etc. In this research, we propose a comprehensive marketing mix
model that captures the hierarchical structure and the carryover, shape and
scale effects of certain marketing activities, as well as sign restrictions on
certain coefficients that are consistent with common business sense. In
contrast to commonly adopted approaches in practice, which estimate parameters
in a multi-stage process, the proposed approach estimates all the unknown
parameters/coefficients simultaneously using a constrained maximum likelihood
approach and solved with the Hamiltonian Monte Carlo algorithm. We present
results on real datasets to illustrate the use of the proposed solution
algorithm.
Related papers
- Parameter Competition Balancing for Model Merging [13.66727853299506]
PCB-Merging is a training-free technique that adjusts the coefficients of each parameter for effective model merging.
PCB-Merging achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models.
arXiv Detail & Related papers (2024-10-03T11:17:58Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Efficient Multi-agent Reinforcement Learning by Planning [33.51282615335009]
Multi-agent reinforcement learning (MARL) algorithms have accomplished remarkable breakthroughs in solving large-scale decision-making tasks.
Most existing MARL algorithms are model-free, limiting sample efficiency and hindering their applicability in more challenging scenarios.
We propose the MAZero algorithm, which combines a centralized model with Monte Carlo Tree Search (MCTS) for policy search.
arXiv Detail & Related papers (2024-05-20T04:36:02Z) - Model-based Reinforcement Learning for Parameterized Action Spaces [11.94388805327713]
We propose a novel model-based reinforcement learning algorithm for PAMDPs.
The agent learns a parameterized-action-conditioned dynamics model and plans with a modified Model Predictive Path Integral control.
Our empirical results on several standard benchmarks show that our algorithm achieves superior sample efficiency and performance than state-of-the-art PAMDP methods.
arXiv Detail & Related papers (2024-04-03T19:48:13Z) - Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble [11.542472900306745]
Multi-Comprehension (MC) Ensemble is proposed as a strategy to augment the Out-of-Distribution (OOD) feature representation field.
Our experimental results demonstrate the superior performance of the MC Ensemble strategy in OOD detection.
This underscores the effectiveness of our proposed approach in enhancing the model's capability to detect instances outside its training distribution.
arXiv Detail & Related papers (2024-03-24T18:43:04Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation.
We introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs.
We show that our algorithm provides comparable sublinear regret to the existing works.
arXiv Detail & Related papers (2023-10-10T01:39:04Z) - Relational Reasoning via Set Transformers: Provable Efficiency and
Applications to MARL [154.13105285663656]
A cooperative Multi-A gent R einforcement Learning (MARL) with permutation invariant agents framework has achieved tremendous empirical successes in real-world applications.
Unfortunately, the theoretical understanding of this MARL problem is lacking due to the curse of many agents and the limited exploration of the relational reasoning in existing works.
We prove that the suboptimality gaps of the model-free and model-based algorithms are independent of and logarithmic in the number of agents respectively, which mitigates the curse of many agents.
arXiv Detail & Related papers (2022-09-20T16:42:59Z) - Model-based Multi-agent Reinforcement Learning: Recent Progress and
Prospects [23.347535672670688]
Multi-Agent Reinforcement Learning (MARL) tackles sequential decision-making problems involving multiple participants.
MARL requires a tremendous number of samples for effective training.
Model-based methods have been shown to achieve provable advantages of sample efficiency.
arXiv Detail & Related papers (2022-03-20T17:24:47Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.