Estimation in Tensor Ising Models
- URL: http://arxiv.org/abs/2008.12882v1
- Date: Sat, 29 Aug 2020 00:06:58 GMT
- Title: Estimation in Tensor Ising Models
- Authors: Somabha Mukherjee, Jaesung Son, and Bhaswar B. Bhattacharya
- Abstract summary: We consider the problem of estimating the natural parameter of the $p$-tensor Ising model given a single sample from the distribution on $N$ nodes.
In particular, we show the $sqrt N$-consistency of the MPL estimate in the $p$-spin Sherrington-Kirkpatrick (SK) model.
We derive the precise fluctuations of the MPL estimate in the special case of the $p$-tensor Curie-Weiss model.
- Score: 5.161531917413708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $p$-tensor Ising model is a one-parameter discrete exponential family for
modeling dependent binary data, where the sufficient statistic is a
multi-linear form of degree $p \geq 2$. This is a natural generalization of the
matrix Ising model, that provides a convenient mathematical framework for
capturing higher-order dependencies in complex relational data. In this paper,
we consider the problem of estimating the natural parameter of the $p$-tensor
Ising model given a single sample from the distribution on $N$ nodes. Our
estimate is based on the maximum pseudo-likelihood (MPL) method, which provides
a computationally efficient algorithm for estimating the parameter that avoids
computing the intractable partition function. We derive general conditions
under which the MPL estimate is $\sqrt N$-consistent, that is, it converges to
the true parameter at rate $1/\sqrt N$. In particular, we show the $\sqrt
N$-consistency of the MPL estimate in the $p$-spin Sherrington-Kirkpatrick (SK)
model, spin systems on general $p$-uniform hypergraphs, and Ising models on the
hypergraph stochastic block model (HSBM). In fact, for the HSBM we pin down the
exact location of the phase transition threshold, which is determined by the
positivity of a certain mean-field variational problem, such that above this
threshold the MPL estimate is $\sqrt N$-consistent, while below the threshold
no estimator is consistent. Finally, we derive the precise fluctuations of the
MPL estimate in the special case of the $p$-tensor Curie-Weiss model. An
interesting consequence of our results is that the MPL estimate in the
Curie-Weiss model saturates the Cramer-Rao lower bound at all points above the
estimation threshold, that is, the MPL estimate incurs no loss in asymptotic
efficiency, even though it is obtained by minimizing only an approximation of
the true likelihood function for computational tractability.
Related papers
- Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation [53.17668583030862]
We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation.
We propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP)
We show that LOOP achieves a sublinear $tildemathcalO(mathrmpoly(d, mathrmsp(V*)) sqrtTbeta )$ regret, where $d$ and $beta$ correspond to AGEC and log-covering number of the hypothesis class respectively
arXiv Detail & Related papers (2024-04-19T06:24:22Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Sharper Analysis for Minibatch Stochastic Proximal Point Methods:
Stability, Smoothness, and Deviation [41.082982732100696]
We study a minibatch variant of proximal point (SPP) methods, namely M-SPP, for solving convex composite risk minimization problems.
We show that M-SPP with minibatch-size $n$ and quadratic count $T$ enjoys an in-expectation fast rate of convergence.
In the small-$n$-large-$T$ setting, this result substantially improves the best known results of SPP-type approaches.
arXiv Detail & Related papers (2023-01-09T00:13:34Z) - Policy evaluation from a single path: Multi-step methods, mixing and
mis-specification [45.88067550131531]
We study non-parametric estimation of the value function of an infinite-horizon $gamma$-discounted Markov reward process.
We provide non-asymptotic guarantees for a general family of kernel-based multi-step temporal difference estimates.
arXiv Detail & Related papers (2022-11-07T23:15:25Z) - Single Trajectory Nonparametric Learning of Nonlinear Dynamics [8.438421942654292]
Given a single trajectory of a dynamical system, we analyze the performance of the nonparametric least squares estimator (LSE)
We leverage recently developed information-theoretic methods to establish the optimality of the LSE for non hypotheses classes.
We specialize our results to a number of scenarios of practical interest, such as Lipschitz dynamics, generalized linear models, and dynamics described by functions in certain classes of Reproducing Kernel Hilbert Spaces (RKHS)
arXiv Detail & Related papers (2022-02-16T19:38:54Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
We analyze the convergence of single-pass, fixed step-size gradient descent on the least-square risk under this model.
As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points.
arXiv Detail & Related papers (2020-06-15T08:25:50Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
This paper establishes a precise high-dimensional theory for boosting on separable data.
Under a class of statistical models, we provide an exact analysis of the universality error of boosting.
We also explicitly pin down the relation between the boosting test error and the optimal Bayes error.
arXiv Detail & Related papers (2020-02-05T00:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.