論文の概要: Random Surfing Revisited: Generalizing PageRank's Teleportation Model
- arxiv url: http://arxiv.org/abs/2008.12916v2
- Date: Tue, 1 Sep 2020 03:06:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 17:28:51.163960
- Title: Random Surfing Revisited: Generalizing PageRank's Teleportation Model
- Title(参考訳): ランダムサーフィン再考:PageRankのテレポーテーションモデルを一般化
- Authors: Athanasios N. Nikolakopoulos
- Abstract要約: NCDawareRankは、ネットワークメタ情報とその高階構造組織を活用するために設計された、新しいランキングフレームワークである。
NCDawareRankの理論的に予測された特性を実作業ネットワークで検証し,ネットワーク集中度尺度としての有効性を示す。
- 参考スコア(独自算出の注目度): 3.8073142980733
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We revisit the Random Surfer model, focusing on its--often
overlooked--Teleportation component, and we introduce NCDawareRank; a novel
ranking framework designed to exploit network meta-information as well as
aspects of its higher-order structural organization in a way that preserves the
mathematical structure and the attractive computational characteristics of
PageRank. A rigorous theoretical exploration of the proposed model reveals a
wealth of mathematical properties that entail tangible benefits in terms of
robustness, computability, as well as modeling flexibility and expressiveness.
A set of experiments on real-work networks verify the theoretically predicted
properties of NCDawareRank, and showcase its effectiveness as a network
centrality measure.
- Abstract(参考訳): NCDawareRankは,ネットワークメタ情報の活用を目的とした新しいランキングフレームワークであり,その高次構造機構の側面はPageRankの数学的構造と魅力的な計算特性を保ちながら再検討する。
提案されたモデルの厳密な理論的探索は、堅牢性、計算可能性、およびモデリングの柔軟性と表現性の観点から、具体的な利益をもたらす多くの数学的性質を明らかにしている。
NCDawareRankの理論的に予測された特性を実ネットワークで検証し,ネットワーク中心性尺度としての有効性を示す。
関連論文リスト
- Uncovering the hidden core-periphery structure in hyperbolic networks [0.0]
双曲型ネットワークモデルは、小さな世界性、スケール自由性、高いクラスタリング係数、コミュニティ構造など、基本的で不可欠な特徴を示す。
本稿では,双曲型ネットワークモデルにおける重要な特徴であるコア周辺構造の存在について検討する。
論文 参考訳(メタデータ) (2024-06-28T14:39:21Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - SeismicNet: Physics-informed neural networks for seismic wave modeling
in semi-infinite domain [11.641708412097659]
半無限領域における地震波モデリングのための新しい物理インフォームドニューラルネットワーク(PINN)モデルを提案する。
計算効率の面では、ネットワークのスケーラビリティと解の精度を向上させるために、時間領域分解による逐次訓練戦略を検討する。
提案したPINNモデルの性能を評価するために,様々な数値実験が実施されている。
論文 参考訳(メタデータ) (2022-10-25T14:25:07Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
本稿では,逆グラフ自動エンコーダに基づく潜在ネットワーク埋め込みモデルを提案する。
この枠組みの下では、潜伏構造を発見する問題は、部分的な観測から潜伏関係を推測するものとして定式化されている。
論文 参考訳(メタデータ) (2021-09-30T16:49:46Z) - Network Embedding via Deep Prediction Model [25.727377978617465]
本稿では,深層予測モデルを用いて構造化ネットワーク上での転送挙動を捕捉するネットワーク埋め込みフレームワークを提案する。
ネットワーク構造埋め込み層は、Long Short-Term Memory NetworkやRecurrent Neural Networkなど、従来の深部予測モデルに付加される。
ソーシャルネットワーク, 引用ネットワーク, バイオメディカルネットワーク, 協調ネットワーク, 言語ネットワークなど, さまざまなデータセットについて実験を行った。
論文 参考訳(メタデータ) (2021-04-27T16:56:00Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z) - A general framework for defining and optimizing robustness [74.67016173858497]
分類器の様々な種類の堅牢性を定義するための厳密でフレキシブルなフレームワークを提案する。
我々の概念は、分類器の堅牢性は正確性とは無関係な性質と考えるべきであるという仮定に基づいている。
我々は,任意の分類モデルに適用可能な,非常に一般的なロバスト性フレームワークを開発する。
論文 参考訳(メタデータ) (2020-06-19T13:24:20Z) - NEW: A Generic Learning Model for Tie Strength Prediction in Networks [5.834475036139535]
タイの強度予測(タイの強さ予測、英: Tie strength prediction)は、ネットワークに出現する接続パターンの多様性を探索する上で不可欠である。
我々はNEW(Neighborhood Estimating Weight)と呼ばれる新しい計算フレームワークを提案する。
NEWはネットワークの基本構造情報によって純粋に駆動され、多様な種類のネットワークに適応する柔軟性を持つ。
論文 参考訳(メタデータ) (2020-01-15T13:02:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。