論文の概要: Improved anomaly detection by training an autoencoder with skip
connections on images corrupted with Stain-shaped noise
- arxiv url: http://arxiv.org/abs/2008.12977v2
- Date: Wed, 4 Nov 2020 17:09:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 17:30:15.811946
- Title: Improved anomaly detection by training an autoencoder with skip
connections on images corrupted with Stain-shaped noise
- Title(参考訳): Sten型ノイズによる画像のスキップ接続によるオートエンコーダの訓練による異常検出の改善
- Authors: Anne-Sophie Collin and Christophe De Vleeschouwer
- Abstract要約: 異常検出は 復元の残留か もしくは 復元の不確実性に依存する
我々は,再設計のシャープさを改善するために,スキップ接続を備えたオートエンコーダアーキテクチャを検討する。
このモデルでは、実際の欠陥の有無にかかわらず、任意の実世界の画像からクリーンなイメージを復元することが好ましいことを示す。
- 参考スコア(独自算出の注目度): 25.85927871251385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In industrial vision, the anomaly detection problem can be addressed with an
autoencoder trained to map an arbitrary image, i.e. with or without any defect,
to a clean image, i.e. without any defect. In this approach, anomaly detection
relies conventionally on the reconstruction residual or, alternatively, on the
reconstruction uncertainty. To improve the sharpness of the reconstruction, we
consider an autoencoder architecture with skip connections. In the common
scenario where only clean images are available for training, we propose to
corrupt them with a synthetic noise model to prevent the convergence of the
network towards the identity mapping, and introduce an original Stain noise
model for that purpose. We show that this model favors the reconstruction of
clean images from arbitrary real-world images, regardless of the actual defects
appearance. In addition to demonstrating the relevance of our approach, our
validation provides the first consistent assessment of reconstruction-based
methods, by comparing their performance over the MVTec AD dataset, both for
pixel- and image-wise anomaly detection.
- Abstract(参考訳): 産業的ビジョンでは、異常検出問題は任意の画像(欠陥の有無にかかわらず)をクリーンな画像(欠陥のないもの)にマッピングするように訓練されたオートエンコーダで対処することができる。
本手法では, 従来, 異常検出は復元残差に依存するか, あるいは復元不確実性に依存する。
再構成のシャープさを改善するために,スキップ接続を用いたオートエンコーダアーキテクチャを提案する。
クリーンな画像のみをトレーニングに利用できる一般的なシナリオでは、ネットワークのアイデンティティマッピングへの収束を防止するために合成ノイズモデルを用いてそれらを分解し、その目的のために元のステンドノイズモデルを導入することを提案する。
本モデルでは,実際の欠陥の有無に関わらず,任意の実世界の画像からクリーンな画像の復元を好むことを示す。
提案手法の妥当性を示すことに加えて, 画像の異常検出のためのMVTec ADデータセット上での性能を比較することで, 再構成に基づく手法を一貫した評価を行う。
関連論文リスト
- Multi-feature Reconstruction Network using Crossed-mask Restoration for Unsupervised Industrial Anomaly Detection [4.742650815342744]
産業生産における品質検査には, 教師なし異常検出が重要である。
本稿では,クロスマスク復元を用いた多機能再構成ネットワークMFRNetを提案する。
提案手法は,4つの公開データセットと1つの自作データセットにおいて,他の最先端のデータセットと高い競争力,あるいは大幅に上回っている。
論文 参考訳(メタデータ) (2024-04-20T05:13:56Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - ReContrast: Domain-Specific Anomaly Detection via Contrastive
Reconstruction [29.370142078092375]
殆どの高度な教師なし異常検出(UAD)手法は、大規模データセットで事前訓練された冷凍エンコーダネットワークの特徴表現をモデル化することに依存している。
本稿では,事前学習した画像領域に対するバイアスを低減するために,ネットワーク全体を最適化する新しい疫学的UAD手法であるReContrastを提案する。
2つの一般的な産業欠陥検出ベンチマークと3つの医用画像UADタスクで実験を行い、現在の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-05T05:21:15Z) - Anomaly Detection with Conditioned Denoising Diffusion Models [32.37548329437798]
対象画像に条件付けされた画像再構成のための新しいデノナイズプロセスであるDAD(Denoising Diffusion Anomaly Detection)を導入する。
我々の異常検出フレームワークは条件付け機構を用いており、ターゲット画像が入力画像として設定され、復調過程を導出する。
DDADは、それぞれ(99.8%)および(98.9%)画像レベルのAUROCの最先端結果を達成する。
論文 参考訳(メタデータ) (2023-05-25T11:54:58Z) - A Novel end-to-end Framework for Occluded Pixel Reconstruction with
Spatio-temporal Features for Improved Person Re-identification [0.842885453087587]
人の身元確認は、公共の安全を高めるために群衆の動きを監視し、追跡するために不可欠である。
本研究では、ディープニューラルネットワークからなるRGB画像/映像の効果的な閉塞検出・再構成フレームワークを開発することにより、有効な解を提案する。
具体的には、CNNベースのオクルージョン検出モデルが個々の入力フレームを分類し、次いでConv-LSTMおよびオートエンコーダを用いて、シーケンシャル(ビデオ)および非シーケンシャル(画像)データに対して、オクルードされたフレームに対応するオクルード画素を再構成する。
論文 参考訳(メタデータ) (2023-04-16T08:14:29Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
ビデオの異常検出は重要な問題だが、難しい問題だ。
既存の再構成に基づく手法は、昔ながらの畳み込みオートエンコーダに依存している。
連続フレーム再構築のための新しいオートエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-28T01:57:57Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - Unsupervised Anomaly Detection in Medical Images with a Memory-augmented
Multi-level Cross-attentional Masked Autoencoder [33.5760501931736]
教師なし異常検出(UAD)は、通常の画像のみを含むトレーニングセットを使用して検出器を最適化することにより、異常な画像を見つけることを目的としている。
UADアプローチは、再構成方法、自己教師付きアプローチ、およびImagenet事前訓練モデルに基づくことができる。
異常画像に対する低い再構成誤差問題に対処する新しい再構成に基づくUDA手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T13:32:42Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
本稿では,Web画像を用いた深部FGモデルのトレーニングにおいて,ラベルノイズに対処するための再利用可能なサンプル選択と修正手法を提案する。
私たちのキーとなるアイデアは、再利用可能なサンプルの追加と修正を行い、それらをクリーンな例とともに活用してネットワークを更新することです。
論文 参考訳(メタデータ) (2020-08-06T02:07:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。