論文の概要: Circular Image Deturbulence using Quasi-conformal Geometry
- arxiv url: http://arxiv.org/abs/2504.13432v2
- Date: Mon, 21 Apr 2025 03:40:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 08:48:42.257856
- Title: Circular Image Deturbulence using Quasi-conformal Geometry
- Title(参考訳): 準等角形状を用いた円形画像の乱流
- Authors: Chu Chen, Han Zhang, Lok Ming Lui,
- Abstract要約: 本稿では、画像歪みを取り除くための教師なしアプローチであるCQCD(Circular Quasi-Conformal Deturbulence)フレームワークを紹介する。
この設計により、復元された画像が幾何的に正確かつ視覚的に忠実でありながら、誤推定の蓄積を防止できる。
実験結果から,CQCDは画像復元品質の点で既存の現状の乱流法より優れるだけでなく,高精度な変形場推定も可能であることが示された。
- 参考スコア(独自算出の注目度): 3.239589979987861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The presence of inhomogeneous media between optical sensors and objects leads to distorted imaging outputs, significantly complicating downstream image-processing tasks. A key challenge in image restoration is the lack of high-quality, paired-label images required for training supervised models. In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions through a circular architecture. This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations. The circular restoration process involves both forward and inverse mapping. To ensure the bijectivity of the estimated non-rigid deformations, computational quasi-conformal geometry theories are leveraged to regularize the mapping, enforcing its homeomorphic properties. This guarantees a well-defined transformation that preserves structural integrity and prevents unwanted artifacts. Furthermore, tight-frame blocks are integrated to encode distortion-sensitive features for precise recovery. To validate the performance of our approach, we conduct evaluations on various synthetic and real-world captured images. Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
- Abstract(参考訳): 光センサとオブジェクト間の不均一な媒体の存在は、画像出力を歪ませ、下流の画像処理タスクを著しく複雑にする。
画像復元における重要な課題は、教師付きモデルのトレーニングに必要な高品質なペアラベルイメージの欠如である。
本稿では,CQCD(Circular Quasi-Conformal Deturbulence)フレームワークについて紹介する。
この設計により、復元された画像が幾何的に正確かつ視覚的に忠実でありながら、誤推定の蓄積を防止できる。
円形の復元過程は、前方マッピングと逆マッピングの両方を含む。
推定された非剛性変形の単射性を確保するために、計算準等角幾何学理論を利用して写像を正則化し、その同相性を与える。
これにより、構造的整合性を維持し、不要な成果物を防ぐ、明確に定義された変換が保証される。
さらに、厳密なフレームブロックは、正確な回復のために歪みに敏感な特徴をエンコードするために統合される。
提案手法の有効性を検証するため,様々な合成画像および実世界の画像の評価を行った。
実験結果から,CQCDは画像復元品質の点で既存の現状の乱流法より優れるだけでなく,高精度な変形場推定も可能であることが示された。
関連論文リスト
- SphereDiffusion: Spherical Geometry-Aware Distortion Resilient Diffusion Model [63.685132323224124]
制御可能な球状パノラマ画像生成は、様々な領域でかなりの応用可能性を持っている。
本稿では,これらの課題に対処するために,SphereDiffusionの新しいフレームワークを提案する。
Structured3Dデータセットの実験では、SphereDiffusionは制御可能な球面画像生成の品質を大幅に改善し、平均して約35%のFIDを相対的に削減している。
論文 参考訳(メタデータ) (2024-03-15T06:26:46Z) - Deformation-Invariant Neural Network and Its Applications in Distorted
Image Restoration and Analysis [8.009077765403287]
幾何学的歪みによって劣化した画像は、画像や物体認識などのコンピュータビジョンタスクにおいて重要な課題となる。
ディープラーニングに基づく画像モデルは通常、幾何学的に歪んだ画像に対して正確な性能を与えることができない。
本稿では、幾何学的に歪んだ画像の撮像タスクに対処するフレームワークである変形不変ニューラルネットワーク(DINN)を提案する。
論文 参考訳(メタデータ) (2023-10-04T08:01:36Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
我々は新しいオールインワン・マルチデグレーション画像復元ネットワーク(AMIRNet)を提案する。
AMIRNetは、クラスタリングによって木構造を段階的に構築することで、未知の劣化画像の劣化表現を学習する。
この木構造表現は、様々な歪みの一貫性と不一致を明示的に反映しており、画像復元の具体的な手がかりとなっている。
論文 参考訳(メタデータ) (2023-08-06T04:51:41Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
本稿では,学習画像圧縮(lic)の再構成品質を効果的に劣化させる攻撃手法を提案する。
我々は,Frobeniusノルムに基づく損失関数を導入して,元の画像と再構成された逆例との差を最大化することによって,逆例を生成する。
様々なlicモデルを用いてKodakデータセット上で実験を行った結果,有効性が確認された。
論文 参考訳(メタデータ) (2023-06-01T20:21:05Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
我々はRecRecNet(Rectangling Rectification Network)という新しい学習モデルを提案する。
我々のモデルは、ソース構造をターゲット領域に柔軟にワープし、エンドツーエンドの非教師なし変形を実現する。
実験により, 定量評価と定性評価の両面において, 比較法よりも解法の方が優れていることが示された。
論文 参考訳(メタデータ) (2023-01-04T15:12:57Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
本モデルは,復元画像と劣化画像の類似度を測定するのに有効であることを示す。
同時修復・拡張フレームワークは,実世界の複雑な分解型によく一般化する。
論文 参考訳(メタデータ) (2021-03-04T13:19:50Z) - Generative and Discriminative Learning for Distorted Image Restoration [22.230017059874445]
Liquifyは、画像の歪みに使用できる画像編集のテクニックである。
本稿では,深層ニューラルネットワークに基づく新しい生成的・識別的学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-11T14:01:29Z) - Improved anomaly detection by training an autoencoder with skip
connections on images corrupted with Stain-shaped noise [25.85927871251385]
異常検出は 復元の残留か もしくは 復元の不確実性に依存する
我々は,再設計のシャープさを改善するために,スキップ接続を備えたオートエンコーダアーキテクチャを検討する。
このモデルでは、実際の欠陥の有無にかかわらず、任意の実世界の画像からクリーンなイメージを復元することが好ましいことを示す。
論文 参考訳(メタデータ) (2020-08-29T13:50:49Z) - Learning to Restore a Single Face Image Degraded by Atmospheric
Turbulence using CNNs [93.72048616001064]
このような条件下で撮影された画像は、幾何学的変形と空間のぼかしの組合せに悩まされる。
乱流劣化顔画像の復元問題に対する深層学習に基づく解法を提案する。
論文 参考訳(メタデータ) (2020-07-16T15:25:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。