Intelligent Cross-Organizational Process Mining: A Survey and New Perspectives
- URL: http://arxiv.org/abs/2407.11280v1
- Date: Mon, 15 Jul 2024 23:30:34 GMT
- Title: Intelligent Cross-Organizational Process Mining: A Survey and New Perspectives
- Authors: Yiyuan Yang, Zheshun Wu, Yong Chu, Zhenghua Chen, Zenglin Xu, Qingsong Wen,
- Abstract summary: This paper advocates a specific viewpoint on the field of process mining.
We first summarize the framework of process mining, common industrial applications, and the latest advances combined with artificial intelligence.
This particular perspective aims to revolutionize process mining by leveraging artificial intelligence to offer sophisticated solutions for complex, multi-organizational data analysis.
- Score: 40.62773366902451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Process mining, as a high-level field in data mining, plays a crucial role in enhancing operational efficiency and decision-making across organizations. In this survey paper, we delve into the growing significance and ongoing trends in the field of process mining, advocating a specific viewpoint on its contents, application, and development in modern businesses and process management, particularly in cross-organizational settings. We first summarize the framework of process mining, common industrial applications, and the latest advances combined with artificial intelligence, such as workflow optimization, compliance checking, and performance analysis. Then, we propose a holistic framework for intelligent process analysis and outline initial methodologies in cross-organizational settings, highlighting both challenges and opportunities. This particular perspective aims to revolutionize process mining by leveraging artificial intelligence to offer sophisticated solutions for complex, multi-organizational data analysis. By integrating advanced machine learning techniques, we can enhance predictive capabilities, streamline processes, and facilitate real-time decision-making. Furthermore, we pinpoint avenues for future investigations within the research community, encouraging the exploration of innovative algorithms, data integration strategies, and privacy-preserving methods to fully harness the potential of process mining in diverse, interconnected business environments.
Related papers
- WISE: Unraveling Business Process Metrics with Domain Knowledge [0.0]
Anomalies in complex industrial processes are often obscured by high variability and complexity of event data.
We introduce WISE, a novel method for analyzing business process metrics through the integration of domain knowledge, process mining, and machine learning.
We show that WISE enhances automation in business process analysis and effectively detects deviations from desired process flows.
arXiv Detail & Related papers (2024-10-06T07:57:08Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches) [4.499009117849108]
We perform a systematic review of academic literature to investigate the integration of AI/ML in business process management.
In business process management and process map, AI/ML has made significant improvements using operational data on process metrics.
arXiv Detail & Related papers (2024-07-07T18:26:00Z) - Revolutionizing Process Mining: A Novel Architecture for ChatGPT Integration and Enhanced User Experience through Optimized Prompt Engineering [2.4578723416255754]
This research introduces a novel approach by integrating Large Language Models (LLMs), such as ChatGPT, into process mining tools.
The key innovation of this research lies in developing a tailored prompt engineering strategy for each process mining sub module.
To validate the effectiveness of this approach, the researchers used data from 17 companies that employ BehfaLab's Process Mining Tool.
arXiv Detail & Related papers (2024-05-17T10:48:14Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
This paper proposes a novel approach, Weak Exploration to Strong Exploitation (WESE) to enhance LLM agents in solving open-world interactive tasks.
WESE involves decoupling the exploration and exploitation process, employing a cost-effective weak agent to perform exploration tasks for global knowledge.
A knowledge graph-based strategy is then introduced to store the acquired knowledge and extract task-relevant knowledge, enhancing the stronger agent in success rate and efficiency for the exploitation task.
arXiv Detail & Related papers (2024-04-11T03:31:54Z) - Towards Automated Process Planning and Mining [77.34726150561087]
We present a research project in which researchers from the AI and BPM field work jointly together.
We discuss the overall research problem, the relevant fields of research and our overall research framework to automatically derive process models.
arXiv Detail & Related papers (2022-08-18T16:41:22Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z) - A Framework for Online Investment Algorithms [0.0]
We present and report results for an integrated, and online framework for algorithmic portfolio management.
This article provides a workflow that can in-turn be embedded into a process level learning framework.
Our results confirm that we can use our framework in conjunction with resampling methods to outperform naive market capitalisation benchmarks.
arXiv Detail & Related papers (2020-03-30T11:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.