Testing collapse models with Bose-Einstein-Condensate interferometry
- URL: http://arxiv.org/abs/2008.13580v3
- Date: Sat, 6 May 2023 10:46:08 GMT
- Title: Testing collapse models with Bose-Einstein-Condensate interferometry
- Authors: Bj\"orn Schrinski, Philipp Haslinger, J\"org Schmiedmayer, Klaus
Hornberger, Stefan Nimmrichter
- Abstract summary: We show that precision interferometry with Bose-Einstein condensed atoms can serve to lower the current empirical bound on the localization rate parameter.
In fact, the interplay between CSL-induced diffusion and dispersive atom-atom interactions results in an amplified sensitivity of the condensate to CSL.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The model of continuous spontaneous localization (CSL) is the most prominent
consistent modification of quantum mechanics predicting an objective
quantum-to-classical transition. Here we show that precision interferometry
with Bose-Einstein condensed atoms can serve to lower the current empirical
bound on the localization rate parameter by several orders of magnitude. This
works by focusing on the atom count distributions rather than just mean
population imbalances in the interferometric signal of squeezed BECs, without
the need for highly entangled GHZ-like states. In fact, the interplay between
CSL-induced diffusion and dispersive atom-atom interactions results in an
amplified sensitivity of the condensate to CSL. We discuss experimentally
realistic measurement schemes utilizing state-of-the-art experimental
techniques to test new regions of parameter space and, pushed to the limit, to
probe and potentially rule out large relevant parameter regimes of CSL.
Related papers
- Bayesian inference for near-field interferometric tests of collapse models [0.0]
We consider a matterwave near-field Talbot interferometer and Continuous Spontaneous Localisation (CSL)
We compute the effect of decoherence mechanisms including pressure and blackbody radiation.
We show that in a MAQRO like experiment it is possible to reach masses of $sim109,textu$ and we quantify the bounds which can be placed on CSL.
arXiv Detail & Related papers (2023-10-09T14:44:14Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Decoherence effects in quantum nondemolition measurement induced
entanglement between Bose-Einstein condensates [3.6827848089389486]
We study the robustness of quantum nondemolition (QND) measurement-induced entanglement between Bose-Einstein Condensates (BECs)
We analyze the two dominant channels of decoherence, atomic dephasing and photon loss on the entangled states produced by this scheme.
arXiv Detail & Related papers (2021-10-18T02:53:14Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Quantum gravitational decoherence from fluctuating minimal length and
deformation parameter at the Planck scale [0.0]
We introduce a decoherence process due to quantum gravity effects.
We find that the decoherence rate predicted by our model is extremal, being minimal in the deep quantum regime below the Planck scale and maximal in the mesoscopic regime beyond it.
arXiv Detail & Related papers (2020-11-02T19:01:16Z) - Spatial non-locality in confined quantum systems: a liaison with quantum
correlations [0.0]
We explore the ground state of 1D and 2D artificial atoms with up to six bosons in harmonic trap.
It is shown that the optimized value of the key variational parameter in TDQMC named nonlocal correlation length is close to the standard deviation of the Monte Carlo sample for one boson.
Also it is almost independent on the number of bosons for the 2D system thus confirming that the spatial quantum non-locality experienced by each particle is close to the spatial uncertainty exhibited by the rest of the particles.
arXiv Detail & Related papers (2020-11-02T13:38:08Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.