Spatial non-locality in confined quantum systems: a liaison with quantum
correlations
- URL: http://arxiv.org/abs/2011.00967v1
- Date: Mon, 2 Nov 2020 13:38:08 GMT
- Title: Spatial non-locality in confined quantum systems: a liaison with quantum
correlations
- Authors: Ivan P. Christov
- Abstract summary: We explore the ground state of 1D and 2D artificial atoms with up to six bosons in harmonic trap.
It is shown that the optimized value of the key variational parameter in TDQMC named nonlocal correlation length is close to the standard deviation of the Monte Carlo sample for one boson.
Also it is almost independent on the number of bosons for the 2D system thus confirming that the spatial quantum non-locality experienced by each particle is close to the spatial uncertainty exhibited by the rest of the particles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using advanced stochastic methods (time-dependent quantum Monte Carlo, TDQMC)
we explore the ground state of 1D and 2D artificial atoms with up to six bosons
in harmonic trap where these interact by long-range and short-range
Coulomb-like potentials (bosonic quantum dots). It is shown that the optimized
value of the key variational parameter in TDQMC named nonlocal correlation
length is close to the standard deviation of the Monte Carlo sample for one
boson and it is slightly dependent on the range of the interaction potential.
Also it is almost independent on the number of bosons for the 2D system thus
confirming that the spatial quantum non-locality experienced by each particle
is close to the spatial uncertainty exhibited by the rest of the particles. The
intimate connection between spatial non-locality and quantum correlations is
clearly evidenced.
Related papers
- Universal shot-noise limit for quantum metrology with local Hamiltonians [2.624076371876711]
We derive a universal and fundamental bound for the growth of the quantum Fisher information.
We prove that the precision cannot surpass the shot noise limit at all times in locally interacting quantum systems.
arXiv Detail & Related papers (2023-08-07T16:13:01Z) - Distinguishing dynamical quantum criticality through local fidelity
distances [0.0]
We study the dynamical quantum phase transition in integrable and non-integrable Ising chains.
The non-analyticities in the quantum distance between two subsystem density matrices identify the critical time.
We propose a distance measure from the upper bound of the local quantum fidelity for certain quench protocols.
arXiv Detail & Related papers (2023-08-01T10:27:35Z) - Reconstructing the spatial structure of quantum correlations in materials [0.0]
Quantum correlations are a fundamental property of many-body states.
Yet they remain elusive, hindering certification of genuine quantum materials.
We show that momentumdependent dynamical behavior via neutron scattering enables a general family of quantum correlation.
arXiv Detail & Related papers (2023-06-20T17:55:09Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Effects of spatial nonlocality versus nonlocal causality for bound
electrons in external fields [0.0]
We compare the effects of spatial nonlocality versus nonlocal causality for the ground state and for real-time evolution of two entangled electrons in parabolic potential in one spatial dimension.
It was found that the spatial entanglement quantified by the linear quantum entropy is predicted with good accuracy using the spatial nonlocality, parameterized naturally within the TDQMC approach.
arXiv Detail & Related papers (2022-06-07T00:48:44Z) - Decoherence effects in quantum nondemolition measurement induced
entanglement between Bose-Einstein condensates [3.6827848089389486]
We study the robustness of quantum nondemolition (QND) measurement-induced entanglement between Bose-Einstein Condensates (BECs)
We analyze the two dominant channels of decoherence, atomic dephasing and photon loss on the entangled states produced by this scheme.
arXiv Detail & Related papers (2021-10-18T02:53:14Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.